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Abstract. Investigative workflows requires interactive exploratory anal-
ysis on large heterogeneous knowledge graphs. Current databases show
limitations in enabling such task. This paper discusses the architecture
of Siren Federate, a system that efficiently supports exploratory graph
analysis by bridging the document-oriented and relational models. Tech-
nical contributions include distributed join algorithms, adaptive query
planning, query plan folding, and semantic caching. Experiments show
that Siren Federate exhibits low latency and scales well with the amount
of data, the number of users, and the number of computing nodes.

Keywords: Exploratory Graph Analysis - Knowledge Graph - Database
and Information System Architecture - Distributed Join Algorithms -
Document-oriented Database.

1 Introduction

Siren provides its Investigative Intelligence platform to Law Enforcement, Na-
tional Security and Cyber-threat investigators. Investigative intelligence is a spe-
cialized area of data analytics with the goal of uncovering threats and criminal
activities [1I3] through the analysis of inter-connected data.

Knowledge graphs [I3] are fundamental elements in investigation systems,
as they integrate diverse data into a unified graph for data analysis. In fact,
investigations often involve connecting the dots across large amount of structured
(such as database table records), semi-structured (such as XML, JSON; or logs),
and unstructured data (such as text or multimedia content). Malicious actors
exploit the increasing volume and complexity of these data to blend in and
operate. Therefore, it is essential that exploratory graph analysis works at scale
to uncover complex chains of dependencies hidden within massive volumes, thus
allowing to trace incidents, detect vulnerabilities, and manage risks. Additionally,
investigative systems must have fast response times: investigators often interact
with the system through an explorative and iterative process, which can be
hindered by large system latency [18].

Current database systems face scalability and flexibility challenges imple-
menting these requirements, as detailed in Section [2] Siren Federate addresses
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these challenges by integrating relational and graph analytics into Elasticsearch,
a distributed Information Retrieval (IR) system [10]. Its extension enables effi-
cient analysis of massive knowledge graphs while retaining searching and rele-
vance ranking capabilities of IR systems.

In this paper, we discuss how Siren Federate bridges the gap between document-
oriented and relational models, we illustrate its architecture, and finally we eval-
uate its performance on a large synthetic dataset.

2 Motivations

By mapping data sources to entities (vertices) and their relationships (edges) in
a graph structure, knowledge graphs provide a flexible and dynamic framework
for data integration and retrieval, crucial in rapidly evolving domains. Inves-
tigative workflows on knowledge graphs often involves exploratory analysis [17]
for discovering patterns and generating new leads. An investigator may start
with limited information and iteratively expand their search within the graph
to uncover new evidences. The system must guide users in searching, filtering,
and drilling down through this data to pinpoint potential entities of interest.
Additionally, graph analytical capabilities such as path finding, centrality, or
community detection, can help discovering relevant subgraphs to investigators.

Siren’s platform supports this workflow by combining several data interac-
tion paradigms — search, analytic dashboards, set-to-set navigatiorﬂ and graph
visualization — into a coherent model. For instance, individuals, cellphone data,
calls, texts, and network cells are linked together in a Signals Intelligence sce-
nario to form a complex graph. Set-to-set navigation guides investigators in con-
necting together those different datasets. Applying filters to one set impacts all
(in)directly connected sets, allowing exploration of the relevant information. The
investigator can move from cellphones to related records, like locations visited
by cellphone’s owners whom received crime-related texts. Graph visualization
helps visualizing the inter-connected sets, identifying patterns or clusters, and
answering questions like “Which people own which cellphone? Do they connect to
the same network cell? Do they meet with other groups of users at other times?”.

Effective exploratory graph analysis must handle diverse query workloads:
(a) searching textual documents (e.g., social media, open web, mobile forensic
data) and arbitrary records with relevance ranking and highlighting; and (b) re-
lational and graph database workloads [4] such as OLTP queries (processing
only a localized part of the graph), OLAP queries (spanning large portions of
the graph), neighborhood queries, traversal queries over long graph paths, and
global graph analytics (e.g., global pattern matching, graph search, community
detection, path finding, centrality). The challenge is to maintain such a mixed
workload at large scale and interactive speed, with response times ranging from
sub-seconds to seconds to not impact the investigator’s workflow.

Despite the capabilities of graph and relational databases, they often fall
short in meeting investigative workflows requirements [4]. Native graph stores

! Set-to-set navigation is a type of relational faceted navigation [23].



struggle with large-scale data due to limited sharding and replication. Relational
databases handle well structured data and complex queries, but lack flexibility
for heterogeneous data and have limited graph, text processing, and search ca-
pabilities [7]. Multi-model databases attempt to unify various data models, but
their origins in specific models often lead to inefficiencies in handling diverse
workflows. Achieving optimal performance across relational, graph, and full-text
search remains difficult due to challenges in query processing, schema design, and
indexing [20]. Finally, polyglot architectures do not fully resolve these issues, as
they require data duplication and movement across multiple specialized backends
[21]. This led us to use Elasticsearch as it supports a flexible data model, scales
well on commodity machines, and offers advanced text processing and search
capabilities. Elasticsearch offers interactive speed by leveraging inverted indices
for search, columnar storage for fast analytics, and effective caching strategies.
However, document-oriented databases like Elasticsearch have limitations in
joining data. Joins must be pre-planned at indexing time, storing documents
to be joined on the same index shardE| Without resorting to data duplication,
such a mechanism is only suitable for hierarchical relationships but not for more
complex ones like networks. In fact, joins are needed to implement a competent
graph analytics system [32]. Therefore, a distributed architecture that combines
the strengths of graph databases, relational databases, and IR systems is needed.
It must scale to massive heterogeneous graphs and support efficient relational
and graph operations, to enable the iterative exploratory analysis of intelligence
workflows. Siren Federate addresses these challenges by incorporating query-time
distributed join capabilities between different indices into Elasticsearch.

3 Bridging the Document-Oriented and Relational
Models

In a document-oriented store, one approach to model a graph is to map ver-
tices and edges to documents [4]. IR systems provide flexible data modeling and
advanced search capabilities, but lack the necessary relational join operations
required by exploratory graph analysis (e.g., to find adjacent vertices). Siren
Federate bridges this gap by allowing joins within the document-oriented model,
thus supporting the analysis of knowledge graphs.

Several works attempt to bridge between document-oriented and relational
models by mapping the first into the second [6II427)3T]. However, these ap-
proaches are limited to what relational databases propose and miss optimiza-
tions offered by IR systems for processing and searching documents. Siren Fed-
erate takes the opposite approach, mapping from a relational data model to a
document-centric data model in order to fully leverage what IR systems offer.

In the relational model, a join combines rows from multiple tables into a
new table. Instead, in the document-oriented model, queries are applied to doc-
uments in an index, and returns matching documents. Siren Federate expresses
a join operation <1 within this model as the process of finding documents from

2 lhttps:/ /www.elastic.co/guide/en /elasticsearch /reference/8.13 /joining-queries.html
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an index (the parent set) that are related to documents from another index
(the child set) according to specific conditions, like field equality. Siren Federate
implements (a) the semi-join x for filtering the parent set’s documents based
on the child set’s documents; and (b) the inner-join < for extending the par-
ent set’s documents with fields from the matching child set’s documents. These
mechanisms are well suited for the iterative exploration needed in investigative
intelligence, allowing to refine a target set of documents with results from pre-
vious investigation stages.
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Fig. 1: A staged logical query plan Fig. 2: Siren Federate’s architecture

The logical steps for Siren Federate to join two document sets from indices
A and B are highlighted in gray in Fig. [I] Two of the steps involve a SCAN
operation, searching over the parent set A and child set B to retrieve subsets
of documents to be joined. These documents may need to be exchanged across
the computing cluster according to one of the different strategies described in
Sec. The parent and child subsets are then locally joined on the cluster’s
nodes by a JOIN operation, using data structures like hash tables, inverted in-
dices, or k-d trees. The join results are tuples (in the relational sense) repre-
senting documents from the parent index that have fulfilled the join conditions.
These tuples are then used by another SCAN operation to filter the parent index,
retrieving the parent documents that meet the join conditions. This model also
supports multi-join operations, with multiple child sets joined with the parent
set. This is represented using a non-binary tree structure, where each SCAN op-
eration can be associated with more than one child JOIN operation (see Fig. [1).

Siren Federate follows a late materialization approach, scanning only fields
from parent documents to evaluate a join operation and avoid manipulating en-
tire documents. Each document is associated with a global ID (see Sec. |4.1)), to
uniquely identify it across the system. Tuples produced by the join operation
include this ID, rather than the entire document content. Upstream operations
can use this ID to materialize necessary fields. This strategy is used for vari-
ous operations, such as filtering, sorting, aggregating, and retrieving document



content. These operations are delegated to the underlying Elasticsearch engine,
which is optimized for handling such tasks efficiently.

Given the document-centric model, tuples produced by the join must be
grouped and sorted by the global document ID, as the join may produce scattered
tuples about the same parent document, for example in the case of many-to-many
relationships. This enables the parent SCAN operation to efficiently merge the
join output based on ordered document IDs, which align with the natural order of
the underlying log-structured storage (see Sec. . We employ efficient exchange
strategies for optimizing the grouping and sorting operations (see Sec. .

Siren Federate uses this logical model to integrate relational joins into the
document-oriented model. This representation drives the architecture design and
runtime behavior of Siren Federate. For instance, the adaptive query planner uses
it to stage the query plan execution. The semantic information embedded within
this model is used by the semantic caching, but also for folding the query plan.
Finally, this model retains the search engine’s capabilities to efficiently execute
filters, sorting, and aggregations.

4 Siren Federate Architecture

This section introduces the core architectural components of Siren Federate,
shown in Fig. [2] Siren Federate serves as the compute layer of an investigative
system, leveraging the distributed computing and storage architecture of Elas-
ticsearch for scalability. The application layer of the investigative system relies
on Siren Federate’s relational and analytical capabilities via its search API.

The distributed IR system consists of a cluster of computing nodes. Each
node plays a different role in the cluster: coordinator nodes are responsible for
planning the execution of a request received from the search API, while data
nodes are responsible for storing data and executing operations dictated by the
coordinator’s query plan. This architecture ensures sub-second to seconds re-
sponse time at scale, as computational load is distributed across data nodes,
which can independently process the log-structured data storage to produce re-
sults (Sec. . Data nodes execute scan and join operations using a columnar
data processing model (Sec. and different join algorithms (Sec. . The
query plan defined by the coordinator is divided into multiple stages (Sec. .
Redundant operations of the query plan are folded to avoid unnecessary compu-
tation (Sec. . The logical query plan is processed iteratively, stage-by-stage,
interleaving its physical planning with its execution. At each iteration, a cost-
based query optimizer checks the semantic cache to reuse existing join results
(Sec. or selects the most efficient join algorithm.

4.1 Log-Structured Distributed Data Store

Siren Federate leverages Elasticsearch’s distributed data store, which horizon-
tally partitions data across nodes using document sharding. An index is parti-
tioned into shards, and each document is routed to a shard. A shard is a Lucene



index [I1], based on a log-structured model [22], and composed of one or more
index segments. The log-structured model adopts an append-only update strat-
egy and consists in creating a file-based data structure called index segment.
Segments are immutable and get merged over time or when a size threshold
is reached. This append-only model allows for (1) implementing a lightweight
read-lock mechanism to guarantee data consistency during the execution of dis-
tributed joins, enabling the concurrent execution of queries and real-time data
updates; and (2) dynamically generating a global ID for documents by combining
shard and segment IDs with the document’s insertion order, thanks to the im-
mutability of segments. This global ID enables the quick location of a document’s
physical position in the cluster, and is leveraged to achieve late materialization
during the computation of join operations, as explained in Sec. [3]

4.2 Columnar In-Memory Processing

Siren Federate stores data for intermediate join computation into off-heap main
memory using a columnar layout and leverages compression algorithms opti-
mized for specific data types. During join operations, Siren Federate processes
only the relevant fields, such as join key fields and global document IDs. The
data exhibits a tabular structure, with tuples corresponding to documents and
columns to their fields. There are two approaches for processing tabular data:
row-at-a-time and column-at-a-time.

The row-at-a-time approach reads whole tuples even if only a few columns are
needed, leading to CPU cache misses and negatively impacting the performance.
Following best practices from [I5], Siren Federate adopted the column-at-a-time
approach, improving the query performance by a factor of 2 compared to the
row-at-a-time implementationﬂ

The column-at-a-time approach uses a batch-processing pipeline. Each batch
stores a fixed number of tuples, stored in a columnar fashion. The size of a batch
is optimized to fit within the CPU cache line to avoid cache misses. Although
batches are currently processed sequentially by a worker thread, future plans
include parallel batch processing to increase throughput. A profiling tooﬁ showed
an increase of the CPU cache usage with the column-at-a-time approach: Siren
Federate ver. 27.5 increased “cache-references” by 25% compared to ver. 22.6 that
uses the row-at-a-time approach, demonstrating enhanced CPU cache utilization.

4.3 Distributed Join Algorithms

Siren Federate implements join techniques that leverage the intrinsic data struc-
tures of the underlying IR system to ensure scalability and high performance. An
example with two distributed indices A and B is shown in Fig. 8] Both indices
are partitioned into three shards, whose data needs to be exchanged across the
computing nodes in order to be joined. The available join strategies are

3 |https: / /info.siren.io/content /siren-benchmark-whitepaper
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Broadcast Hash Join Data from the child index is forwarded to all computing
nodes hosting shards of the parent index (see Fig. [3| left). Local hash tables,
created from the received data, are probed while scanning the parent index’s
columnar storage. Worker threads process segments in parallel, and local hash
tables are shared across these worker threads.

Broadcast Index Join This strategy utilizes Lucene’s inverted indexes (akin
to burst tries [I2]) for binary values, and Bkd-trees [26] for numerical values.
Data are exchanged like the broadcast hash join (see again Fig. left), but
the child set data is used for index lookups over the parent set, eliminating
exhaustive scans of the columnar storage. Worker threads process segments and
probe the index with the received data. This is effective for graph expansion or
path finding tasks, where the objective is to incrementally expand relationships
from a group of records.

Partitioned Hash Join Inspired by [30], it leverages the columnar storage to
scan data from the parent and child indices, partitioning data across computing
nodes, and creating localized hash tables for each partition (see Fig. [3| middle).
This method employs morsel-driven parallelism and involves a two-step parti-
tioning to create fixed-sized work units: an initial node partitioning at the scan
level (sender side) and a second partitioning at the join level (receiver side). This
method achieves better parallelism and reduced memory and network overheads
compared to strategies like the broadcast hash join. In Fig. [3| only three com-
puting nodes are shown for the sake of space. However, this join strategy can
leverage all cluster nodes regardless the number of shards.

Routing Join Similar to the broadcast hash join, it leverages the document
sharding to reduce network traffic. It reuses the sharding routing function of the
parent index to partition and exchange the child set’s tuples to the corresponding
parent set’s shards [5] (see Fig. [3 right). Each worker thread employs either a
hash table-based strategy (like the broadcast hash join) or an inverted index-
based strategy (like the broadcast index join) to compute the results. Preliminary
experiments (not presented in this work) indicate a 30% reduction in response
times compared to the broadcast hash join strategy.

These strategies optimize specific scenarios. The role of the query planner
(Sec|4.4)) is to select the most cost-effective join strategy by considering factors
such as shard topology and set cardinality to optimize the cluster’s utilization.

4.4 Adaptive Query Planner

Accurate join cardinality estimation is crucial for planning the most effective
join algorithm. Unfortunately, this is challenging with complex query plans with
deeply nested joins, common in investigative scenarios. Traditional static meth-
ods, based on histograms and simple cardinality estimation formulas, often yield
inaccurate estimations due to assumptions like attribute independence and dis-
tribution uniformity, resulting in sub-optimal selection of join algorithms. These
inaccuracies are exacerbated as the complexity of the query plan increases [16].
Index-based join sampling, while more accurate, is computationally expensive,
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Fig. 3: Federate’s distributed join algorithms: (left) Broadcast Hash/Index Join,
(middle) Partitioned Hash Join, (right) Routing Join. Arrows represent data
exchange between computing nodes

especially in distributed systems where it requires data shuffling across the net-
work, and also suffers from inaccuracies with long sequence of joins.

To address this, Siren Federate implements an adaptive query planner (AQP)
that interleaves planning and execution via stages [9]. This approach collects run-
time statistics during execution, allowing more accurate cardinality estimation
compared to static methods, especially for long sequence of joins. This enables
to dynamically adjust the query plan based on real-time feedback. AQP operates
in several key phases:

Logical Plan Generation The planner generates a logical query plan divided
into stages. Each stage corresponds to a materialization point where an inter-
mediate result is fully created before proceeding further. Typically, it comprises
a logical join and two logical scans.

Physical Optimization The planner gathers statistical information, computes
costs for various join strategies, and selects the optimal one. This is repeated
for each stage, leveraging runtime cardinality estimates from already computed
nested joins (stages).

Execution The physical sub-graph of each stage is executed, materializing in-
termediate results before proceeding.

Parallelization The query plan enables parallel execution of independent stages.
Independent stages are executed concurrently, while dependent stages must wait
for predecessors to complete.

To illustrate how AQP works, consider a dataset with three indices. An in-
dex A of documents representing cellphones, with fields containing the phone
number, the operator, reference to the person who subscribed the contract, etc.
An index B of documents representing the online activity of a person such as so-
cial media posts, with fields like person’s identity and textual content. An index
C' of documents representing each call detail record (CDR) with fields such as



time, duration, completion status, source and destination numbers of a call [29].
Imagine we want to find all CDRs related to phones used by people involved in
suspicious online activities. AQP would generate a logical query plan in stages
(logical plan generation) as shown in Fig. |1} Assume filters (e.g., keyword match-
ing or vector search) applied to B identifies crime-related posts, then the set of
“phones used by people involved in suspicious online activities” is the result of
A x B (Stages 1 and 2). The set of CDRs where these phones are the caller is
returned by C' x A using the CDR’s caller as the join key (Stage 3). Similarly,
the set of CDRs where these phones are the callee is returned by C' x A using the
CDR’s callee as the join key (Stage 4). The disjunction of these two sets produces
the desired results (Stage 5). Different join strategies may be used depending on
the statistical information gathered from the previous stages (physical optimiza-
tion and execution). Since Stages 1 and 2 are independent, they can be executed
in parallel before moving to Stages 3 and 4 (parallelization).

4.5 Query Plan Folding

User queries often contain redundant operations that negatively impact query
processing, such as repeated searches or joins. Redundancies commonly occur
when investigating related entities through various graph topologies, boolean
expressions, or batched requests targeting the same entities with diverse filters
or aggregations. Redundant operations affect also SQL query processing [19128].

To address this challenge, Siren Federate adopts a query plan folding that
uses the semantic definition of query operators to detect and merge redundant
operators across one or more logical query plans. The semantic definition of an
operator captures its logical meaning, structure, dependencies, and state of the
data tables it involves [§].

Siren Federate handles not only the folding of selection and scan operations
[28], but also of join operations. The folding strategy consolidates redundant
operations into a unified shared operator. In the previous AQP example, the
operators from Stage 1 and its subsequent SCAN A are folded with those from
Stage 2 and SCAN A (highlighted by a hatched background in Fig. [1]) since they
represent the same join. However, Stage 3 and 4 are not folded as they have
different join conditions: the CDR’s caller number is used in Stage 3, while the
CDR’s callee number is used in Stage 4. Similarly, SCAN C is not folded between
the two stages because it scans different fields.

4.6 Semantic Caching

In exploratory graph analysis, iterative analysis often results in recurrent exe-
cution of the same join operations. By caching these, the system can optimize
subsequent related queries, reducing the latency and computational load.
Semi-joins are well-suited for caching compared to other join types, as their
outputs can be represented as sets of document IDs. Exploiting this, Siren Fed-
erate employs semantic caching, relying on the semantic definition of query op-
erators (Sec. . Compared to conventional caching methods which operate at



the query syntactic level [24], semantic caching [8] indexes cache entries accord-
ing to query operator semantics, guarantying data consistency and resilience to
changes in the underlying data, even when query operators depend on multiple
data sources derived from descendant query operators. Unlike traditional caching
strategies that focus on raw results which can lead to large memory overhead,
the semantic caching strategy uses compact bitset representations to efficiently
encode semi-join outputs. This reduces memory consumption and increases the
potential amount of cached operations, enhancing the overall system efficiency.
To illustrate this, take the example from Sec. [£:4] In a subsequent iteration,
the investigator wants to identify, from a new index D, people owning phones
involved in previously found CDRs. This adds a new join D x C, with C being
the results of the previous iteration. The AQP generates a logical plan including
the subtree from Fig. [l With semantic caching, the results of the subtree can
be reused, meaning that only the additional join D x C' must be computed.
This strategy benefits graph analytics, particularly path finding algorithms
which can be represented as sequences of semi-joins. Semantic caching of semi-
joins reduces redundant computations, minimizing the number of operations and
associated 1/0, and resulting in a more efficient execution of graph queries [25].

4.7 Principles for a competent graph analytics system

In [32], ten Wolde et al. identify eight core features necessary for a competent
graph analytics system. Siren Federate leverages and extends the capabilities of
Elasticsearch to meet these principles:

Fast Scans on Elements with Schema Siren Federate uses Elasticsearch’s
dynamic schema capabilities and column-oriented storage for fast attribute scan-
ning. Dynamic schema-awareness offers flexibility in handling knowledge graph
variability and optimizes query processing by adapting to the data structure.
Skippable Compressed Columnar Storage Elasticsearch supports fast colum-
nar scans with data skipping via pushed-down predicates, combining columnar
storage ordered by document IDs with an inverted index or k-d trees.
Vectorized or Data-Centric Execution Siren Federate adopts column-at-a-
time (vectorized) processing for its data pipelines during scan and join opera-
tions, and an in-memory vector format with compression and data skipping.
Morsel-Driven Multi-Core Siren Federate uses morsel-driven parallelism dur-
ing scan and join operations to distribute constant-sized work units (morsels)
across worker threads, reducing load imbalance and optimizing CPU cache us-
age. Dynamic index segment splitting is critical for better parallelism during
scans of large segments, and reducing query execution latency.
State-of-the-Art Query Optimization Siren Federate’s AQP splits query
plans into stages and employs runtime estimation to avoid the overhead of tra-
ditional table sampling, ensuring efficient query execution.

Bulk APIs/Algebras Elasticsearch’s boolean algebra operates as a bulk API
for predicate evaluation by enabling manipulation of document sets efficiently.
Siren Federate integrates relational algebra that also functions as a bulk API.



Out-of-Core Buffer Manager While performing in-memory join operations,
Siren Federate leverages Elasticsearch’s ability to handle out-of-core data sizes
efficiently during scan. Frequently accessed columns are cached at the operating
system level, ensuring scan operations in RAM.

Explicit Control over Memory Locality Siren Federate uses off-heap mem-
ory management to reduce garbage collection overhead when handling gigabytes
of data in memory for short durations, and optimizes memory locality through
columnar storage, morsel-driven parallelism, and effective data partitioning.

To further enhance performance in a distributed environment, Siren Federate
adopts three additional core features:

Data Locality Leveraging data locality minimizes data movement across the
network, a common bottleneck as it requires additional intermediate serialization
and copy of the data. Siren Federate performs late materialization of documents
using global IDs to quickly locate documents in the cluster and co-locates data
by reusing existing data routing coming from document sharding.

Data Exchange Effective data exchange operators exploit the physical distri-
bution and structure of the storage to maximize memory locality without data
reorganization. Preserving the implicit order, even partially, of materialized tu-
ples during scan and join operations improves the performance of the exchange
operator, which must group and sort tuples based on the document ID as ex-
plained in Sec. [3} Radix partitioning [33] is a highly efficient method for clustering
tuples from a range of documents together, improving document sorting.
Caching Implementing compact caching strategies for intermediate results al-
lows reuse across queries and users, reducing redundant computations and im-
proving overall system efficiency, especially in incremental exploratory scenarios.

5 Evaluation

This section evaluates the scalability and performance of Siren Federate in com-
puting semi—joinsﬁ across various dimensions, such as the number of cluster
nodes, concurrent users and data volume.

Dataset. We use a synthetic dataseﬁ with 15.6 billion documents tracking the
positional information of cell phones to mimic scenarios where analysts monitor
phone calls. This dataset covers 100 days, with 156 million documents per day,
6.5 million unique phone identifiers, and 2,400 positions per phone. One Elas-
ticsearch index per day is created, with 8 primary shards with no replicas. The
total size of the data is 2.7 TB.

® We focus on semi-joins as they are more suitable than inner-joins for large datasets.
For semi-joins, the output size is linear with the cardinality N of the parent set,
compared to O(N x M) for inner-joins (M being the cardinality of the child set).
Semi-joins are used extensively for exploratory graph analysis tasks like set-to-set
navigation, graph expansion, and pathfinding, due to their efficiency and scalability.
S lhttps://gist.github.com /scampi/07e7bd556fe016a5cbatc092c3f418fh
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Setup. The benchmark tests use AWS “i3.4xlarge” machines with Broadwell
processors (16 vCPUs), a local NVME drive for Elasticsearch data, a gp2 drive
for the OS, and a 10 Gbps network link. We use Java Virtual Machine 20.0.1,
Elasticsearch 8.7.1, and Siren Federate 31.1. Elasticsearch is configured with 30
GB heap memory, and Siren Federate with 16 GB off-heap memory.

Experiments. We evaluate Siren Federate with varying cluster sizes (12 to 36
nodes), data volumes, and concurrent users (1, 5 and 10). The system is setup
to serve the maximum number of concurrent users. We use the following queries
with different complexity:

Q1 joins phone numbers in a given area on one day with those in another
area on another day (78 million documents per set); Q2 is similar to Q1 but
over a week (546 million documents per set); Q3 , given a phone number, finds
other phones at the same location over 90 days (14 billion documents filtered
with 2,160 documents); Q4 finds phones at the same location on two different
days (156 million documents each); Q5 is similar to Q4 but over a week (more
than 1 billion documents per set); Q6 is similar to Q4 but over two weeks (more
than 2 billion documents per set).

Queries use the partitioned hash join, except Q3, which uses the broadcast
index join due to the small cardinality of its child set. We measure the execution
time for a randomly-selected query with a fixed number of concurrent users,
bypassing query caches. The benchmark runs until at least 100 measurements
per query are produced, reporting the 90th percentile processing time (P90).

T T T T T T
| |81 user @5 users[110 users

27.69

P90 (s)

Nodes 12 18 36
Ql Q2

Fig. 4: Query times for queries Q1 to Q3 with varying number of nodes and users

Results. Fig. @] reports P90 for queries Q1 to Q3. With one concurrent user, Q1
joins a total of 156 million documents in subsecond time. However, P90 does not
decrease as the number of nodes increases because the amount of data joined is



too small. The latency of the join phase represents an insignificant part of the
response time, while the scan phase is tied to a limited number of shards and
cannot be further distributed.

Q2 joins over 1 billion documents (x7 more data than Q1), with P90 in-
creasing by at most x2.5, indicating a better usage of the computing resources.
However, we notice that response time does not decrease as expected as the
number of nodes increases. In fact, increasing the number of nodes by x3 only
decreases P90 by 30%. We assume this is because the latency of Q1 and Q2
are dominated by some fixed overhead during the query planning and pipeline
execution. This requires further analysis.

Q3, which filters 14 billion documents using the broadcast indez join strategy,
shows P90 decreasing by x2 as nodes increases by x3. This strategy avoids
partitioning and shuffling such a large parent set while still distributing load
across the full cluster as the number of nodes increases.

With 5 concurrent users, P90 of Q1 increases by x12.5 — on average across
cluster’s configurations — when compared to response times with 1 user; Q2
increases by x6.8; Q3 by x4.2. With 10 concurrent users, the increase of P90 is
by at most x2.3 w.r.t. 5 users. Differently than moving from 1 to 5 concurrent
users, doubling the number of users doubles the response times in this case.
This significant increase in latency is particularly evident for Q1, and it may
underline as previously noted an overhead in query planning and execution for
short queries. Such overhead may impact scaling, and needs to be investigated
in future work. Nonetheless, these results show that Siren Federate scales well
with the number of users and nodes, achieving subsecond to second response
times over large datasets.

For Q4, Q5, and Q6, the aim is to further assess the ability of the system to
scale with the amount of data, joining parent and child sets containing hundreds
of millions to billions of documents each. With 36 nodes, the reported P90 is
1.92; 5.00, and 7.58 seconds for Q4, Q5, and Q6 respectively. We can observe
a sub-linear scaling factor with the size of the join operation. Between Q4 and
Q5 the size of the join operation increases by x7, but P90 only increases by
2.2 seconds. Between Q5 and QG6, the size of the join operation increases by x2
but P90 only increases by 1.5 seconds. These results confirm that Siren Federate
scales well with the amount of data.

6 Conclusion

This paper presented the architecture of Siren Federate, a system that supports
efficient exploratory analysis on large knowledge graphs by bridging document
and relational data models. It addresses challenges in integrating graph analytics
within a document-oriented IR system and demonstrates the effectiveness of this
approach for supporting data-driven investigation systems.

Key contributions include integrating relational join operations within the
document-oriented model, leveraging IR system capabilities, and implement-
ing distributed join algorithms optimized for IR systems. We also introduced
adaptive query planning for accurate runtime cardinality estimation, query plan



folding to reduce redundant computations, and semantic caching to enhance it-
erative query performance. Columnar in-memory processing optimizations and
Elasticsearch’s log-structured distributed architecture were also highlighted.

Performance evaluations using a synthetic dataset with billions of documents
demonstrated the efficiency and scalability of Siren Federate. The results show
the capability to achieve sub-second to second response times on large datasets,
which is critical for supporting the iterative workflow of investigators.

Our architecture retains the search and relevance ranking capabilities of the
IR system while introducing efficient relational operations and graph analytics
at scale. This demonstrates how a combination of document and relational sys-
tem features can enhance scalability and analytical capabilities for exploratory
analysis of large knowledge graphs.

Future efforts will focus on optimizing parallel processing of segments, in-
corporating spatial joins for enhanced analytics, expanding graph analytics, and
developing new adaptive optimization techniques. Finally, we also plan to eval-
uate our system on additional, standard datasets, such as the LDBC Social
Network Benchmark [2].
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