
Introducing RDF Graph Summary with application to Assisted SPARQL
Formulation

Stéphane Campinas∗, Thomas E. Perry∗, Diego Ceccarelli†, Renaud Delbru∗ and Giovanni Tummarello∗‡

∗Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland
firstname.lastname@deri.org

†ISTI-CNR
Dipartimento di Informatica

Università di Pisa
diego.ceccarelli@isti.cnr.it

‡Fondazione Bruno Kessler
Trento, Italy

Abstract—One of the reasons for the slow adoption of
SPARQL is the complexity in query formulation due to data
diversity. The principal barrier a user faces when trying to
formulate a query is that he generally has no information about
the underlying structure and vocabulary of the data.

In this paper, we address this problem at the maximum scale
we can think of: providing assistance in formulating SPARQL
queries over the entire Sindice data collection - 15 billion
triples and counting coming from more than 300K datasets.
We present a method to help users in formulating complex
SPARQL queries across multiple heterogeneous data sources.
Even if the structure and vocabulary of the data sources are
unknown to the user, the user is able to quickly and easily
formulate his queries. Our method is based on a summary
of the data graph and assists the user during an interactive
query formulation by recommending possible structural query
elements.

Keywords-SPARQL; Graph; Analytics; Summary; Query
Formulation; Recommendation;

I. INTRODUCTION

One of the reasons for the slow adoption of SPARQL
is the complexity in query formulation. While the language
itself might not be more complex than SQL, formulating
correct and complex queries is a challenge for the very
reason that makes RDF and Web Data fascinating, i.e., the
data is very diverse and does not follow any predefined
structure and vocabulary. However, the usefulness of Web
Data is clearly dependent on the ease by which data can be
consumed by others. In order to use such a massive amount
of data, people must be able to easily and effectively query
data across multiple web data sources. Therefore, one of
the main challenges is to develop effective methods to help
users formulate complex queries across possibly unknown
data sources.

The principal barrier a user faces when trying to formulate
a query is that he generally has no information about the
underlying structure and vocabulary of the data. While this
information is indispensable, it is frequently missing and
difficult to obtain due to the heterogeneity of Web Data.
Another obstacle in writing effective queries that combines
information across multiple data sources is the lack of
knowledge about how these data sources are interconnected.

A. Contribution
In this paper we address this problem at the maximum

scale we can think of: providing assistance in formulating
SPARQL queries over the entire Sindice data collection - 15
billion triples and counting coming from more than 300K
datasets. We present a method to help users in formulating
complex SPARQL queries across multiple heterogeneous
data sources. Even if the structure and vocabulary of the data
sources are unknown to the user, the user is able to quickly
and easily formulate his queries without having to explore
and study each data source separately. For users having a
good knowledge about the data, the querying experience is
improved and the query writing time reduced. Our method is
based on a summary of the data graph and assists the user
during an interactive query formulation by recommending
possible structural query elements. Our main contributions
are: 1) We formally define our model for the data graph
and the data graph summary in Section III; 2) We develop
an algorithm to automatically recommend graph summary
elements to the user during query formulation based on the
current query state in Section IV.

II. BACKGROUND

Schema summarisation [9] is the task of automatically
generating a more concise representation of a data schema
by presenting only important schema elements while achiev-
ing broad information coverage. Such summary is princi-
pally used for visual exploration of the data schema and for
query discovery. While this summary approach is similar in
essence with our approach, the main differences are: 1) we
present a model for data graph summarisation while they
present a model for schema summarisation, i.e., we generate
the summary directly from the data graph and are not relying
on an existing schema; 2) our model supports the notion of
data sources and enables the summarisation across multiple
data sources.

With respect to query formulation, the closest approach
to our assisted SPARQL editor is MashQL [4] which is
developed for querying graph-based data (e.g., RDF) without
prior knowledge about the structure and vocabulary of the
data collection. However, MashQL defines its own query



language while our approach is directly integrated within
SPARQL. Also, even if MashQL enables the formulation
of query across multiple data sources, it requires the selec-
tion of data sources prior to the query formulation, while
our approach can recommend possible datasets to query
through the GRAPH operator of SPARQL. In other words,
our approach can recommend possible relationships across
datasets. MashQL’s approach is very similar to structural
summary approaches such as [3], [7], [6], [5] and can
recommend both structural and content elements. The sys-
tem relies on a “Graph Signature” which consists of two
structural summaries of the data graph: the “O-Signature” is
a summary of the original graph such that nodes that have
the same outgoing paths are grouped together and the “I-
Signature” summarises a graph by grouping nodes that have
the same incoming paths. Their approach requires specific
indexing methodologies to provide fast response times. In
contrast, our data graph summary can be converted into RDF
and can be queried efficiently by any RDF database since
the data graph summary is very small. There are many other
approaches to query formulation from form-based query to
visual query editor. A review of the main approaches and
how they relate to MashQL can be found in [4].

III. A MODEL FOR WEB DATA GRAPH SUMMARY

For the purpose of this work, we need a generic graph
model that supports the various scenarios found on the Web
of Data. First, we define a labeled directed graph model
that covers the various type of Web Data sources, i.e.,
Microformats, RDFa, RDF databases, etc. We then define the
concept of “node collections” which is a set of nodes sharing
similar characteristics. The Figure 1 depicts the layers of this
graph model. The entity and dataset layers represent datasets,
entities and their relationships. The node collection layer
extends the model introduced in [2] by representing node
collections and their relationships.

1) Data Graph: Let V be a set of nodes and A a set
of labelled edges. The set of nodes V is composed of two
non-overlapping sets: a set of entity nodes V E and a set of
literal nodes V L. Let L be a set of labels composed of a
set of node labels LV , a set of edge labels LA and a set of
dataset labels LD.

Web Data is defined as a graph G over L, and is a
tuple G = 〈V,A, lv〉 where lv : V → LV is a node
labelling function. The set of labelled edges is defined as
A ⊆ {(e, α, v)|e ∈ V E , α ∈ LA, v ∈ V }. The components
of an edge a ∈ A will be denoted by source(a), label(a)
and target(a) respectively.

2) Dataset: A dataset is defined as a subgraph of the Web
Data graph:

Definition 3.1 (Dataset): A dataset D over a graph G =
〈V,A, lv〉 is a tuple D = 〈VD, AD,LVD, lv〉 with VD ⊆ V ,
AD ⊆ A and LVD ⊆ LV .

3) Terminal Nodes: We identify a node that does not have
outgoing edges as terminal. Let V T be a set of terminal

Figure 1: A three layer representation of our Web Data
Graph Summary model. On the node collection layer, nodes
labelled with a star ∗ represents blank collections.

nodes. V T and V E (resp. V L) are not mutually exclusive
and their nodes may overlap.

Definition 3.2 (Terminal Node): A node v ∈ V is said to
be terminal if @a ∈ A|source(a) = v.

4) Node Collection: A node collection is a set of nodes
sharing particular characteristics. Let C be a set of node
collections. The set of node collections C is composed of two
non-overlapping sets: a set of entity collections CE and a set
of blank collections CB . Let LC be a set of node collection
labels and lc : C → LC a node collection labelling function.

An entity collection is a set of entity nodes within the
same dataset sharing similar characteristics. In this paper,
we consider two types of characteristics: class-based and
attribute-based. The class-based characteristic groups to-
gether entity nodes which share identical classes, such as the
class Person in the node collection layer in Figure 1. The
resulting entity collection C is labelled with the set of class
labels, i.e., lc(C) ⊆ LV . The attribute-based characteristic
groups together entity nodes which share the same set
of attribute labels. Attribute-based grouping is necessary
when an entity node does not have a class definition. The
assumption is that entities having similar attributes are likely
to belong to the same class. The resulting entity collection C
is labelled with the set of attribute labels, i.e., lc(C) ⊆ LA.

Definition 3.3 (Entity Collection): An entity collection
C ∈ CE over a dataset D = 〈VD, AD,LVD, lv〉 is a tuple
C = 〈VC , IC , lc〉 with VC ⊆ V ED and IC : V → {0, 1}
an indicator function for node collections such that ∀v ∈
VC , IC(v) = 1

We define two different set indicator functions for entity
collections. The first indicator function IcC is based on the
class definition of an entity node. The class definition of an



Table I: The set of edge labels LAc that defines a class
attribute. The reported frequency is relative to the Sindice
data collection.

Label Frequency

http://www.w3.org/1999/02/22-rdf-syntax-ns#type 123,994,777
http://opengraphprotocol.org/schema/type 61,202,581
http://ogp.me/ns#type 17,184,227
http://opengraph.org/schema/type 2,443,773
http://purl.org/dc/elements/1.1/type 11,367,218
http://dbpedia.org/property/type 120,044
http://dbpedia.org/ontology/type 65,796

entity node v ∈ V ED is defined by its set of class node labels.
A class node of v is defined as:

Definition 3.4 (Class Node): A node v′ ∈ VD is said
to be a class node of an entity node v ∈ V ED if ∃a ∈
AD|label(a) ∈ LAc , source(a) = v, target(a) = v′.

The set LAc is a set of “class attribute” labels such as the
ones in Table I. These attribute labels have been extracted
from the Sindice data collection [1] and are generally used to
define the class of an entity node. We denote by class(v) ⊆
LV the set of labels of class nodes for an entity node v ∈
V ED . The class-based indicator function IcC is defined as:

Definition 3.5 (Class Indicator): Given a dataset D, an
entity node v ∈ V ED and an entity collection C,

IcC(v) =

{
1 if class(v) = lc(C)
0 otherwise

The second indicator function IaC is based on the attribute
definition of an entity node. The attribute definition of an
entity node v ∈ V ED is defined by its set of attribute
labels, i.e., the labels of its outgoing edges. We denote by
attribute(v) ⊆ LA the set of labels of outgoing edges for
an entity node v ∈ V ED .

Definition 3.6 (Attribute Indicator): Given a dataset D,
an entity node v ∈ V ED and an entity collection C,

IaC(v) =

{
1 if attribute(v) = lc(C)
0 otherwise

We define a blank collection as a set of terminal nodes
within a same dataset being target of edges with the same
label and with the same entity collection source. The label
for a blank collection is a tuple 〈LC ,LA〉 with l1 ∈ LC the
label of the source entity collection and l2 ∈ LA the label
of the edge.

Definition 3.7 (Blank Collection): A blank collection
C ∈ CB over a dataset D = 〈VD, AD,LVD, lv〉 is a tuple
C = 〈VC , IbC , lc〉 with VC ⊆ V TD and IbC : V → {0, 1}
an indicator function for blank collections such that
∀v ∈ VC , IbC(v) = 1.

The indicator function IbC for blank collections is defined
as follows:

Figure 2: RDF vocabulary for the data graph summary.

Definition 3.8 (Blank Indicator): Given a dataset D, a
terminal node v ∈ V TD , an entity collection Ci and a blank
collection Cj ,

IbCj
(v) =


1 if ∃a ∈ AD|target(a) = v,

IcCi
(source(a)) = 1 or IaCi

(source(a)) = 1,
lc(Cj) = 〈lc(Ci), label(a)〉

0 otherwise

5) Node Collection Edge: We group edges into c-linksets
on the node collection layer. For example, in Figure 1
the edges employs between institutes (i.e., O1 and O2)
and people (i.e., P1, P2 and P3) are aggregated to form
the linkset Lemploys,Institute,Person on the node collection
layer.

Definition 3.9 (C-Linkset): Given two entity collections
Ci and Cj , we denote a linkset between Ci and Cj with
Lα,i,j = {a|label(a) = α, source(a) ∈ Ci, target(a) ∈
Cj} the set of edges having the same label α and connecting
the node collection Ci to the node collection Cj .

A. Data Graph Summary
In the rest of the paper, we denote by data graph summary

an instantiation of the node collection layer. The node collec-
tion layer is composed of node collections and c-linksets. In
order to make this data graph summary compatible with RDF
databases and SPARQL, we introduce a RDF vocabulary to
represent it as a RDF graph. This RDF model has some
similarities with and can be mapped to the VoID1 vocabulary.

The RDF vocabulary, pictured in Figure 2, enables to cap-
ture the metadata about the nodes and edges of the node col-
lection layer. The vocabulary defines two main classes: Edge
and NodeCollection. A NodeCollection can be subclassed
into either an EntityCollection or a BlankCollection. Edges
and NodeCollections are associated through the properties
source and target. Edges and NodeCollections also have the
properties 1) origin which indicates the dataset in which
they have been defined; 2) cardinality which indicates the
cardinality of their respective c-linkset or node collection;
3) label which defines the label(s) associated to an edge
or a node. Using this RDF model, the indicator functions
IcC , I

a
C and IbC can be easily and efficiently implemented

with SPARQL in order to retrieve all node collections that
match a subset of the labels.

The data graph summary is pre-computed offline using
Hadoop. Computing the summary and the associated statis-
tics on the fly turned out to be impracticable due to the

1VoID: http://www.w3.org/TR/void/

http://www.w3.org/TR/void/


computational complexity as it required large joins and many
data aggregates. Our Hadoop-based implementation requires
a day of computation on a cluster of 10 machines on the full
Sindice dataset (15 billion triples). The resulting data graph
summary is composed of 100M edges.

IV. QUERY RECOMMENDATION

When a user formulates a SPARQL query, the user is in
fact trying to summarise his information needs. However,
this task can be very difficult and time consuming as it
requires the user to have a good knowledge of the structure
and vocabulary of the dataset he is trying to query. This
task becomes even more complex if the user is trying to
formulate a query across multiple data sources. In order to
gain such knowledge, the user must explore and investigate
the data itself before querying it. To save the user from
such a tedious work we develop an Assisted SPARQL Editor,
an application that leverages the data graph summary to
help the user into effectively formulating complex SPARQL
queries even without prior knowledge about the structure
and vocabulary of the data sources. In this section, we first
give an overview of the possible recommendations supported
by the SPARQL editor. Then we introduce some of the
main concepts in SPARQL before explaining how the current
state of the SPARQL query is used to query the data graph
summary and to retrieve possible structural query elements
for recommendation.

A. Recommendations Overview
The Assisted SPARQL Editor supports four kinds of

recommendations: class, predicate, relationships between
variables and named graphs. Examples of such recommen-
dations are pictured in Figure 3. Recommendations of entity
node labels as well as literal node labels are not supported
since such content data is discarded from the data graph
summary.

During query formulation, the assisted editor provides one
of these four different types of recommendations to the user
based on the state of the edited query. The state of the edited
query is composed of an incomplete graph pattern and the
cursor position. The cursor position materialises the Point Of
Focus (POF), i.e., the unknown element of the graph pattern
for which the user requests recommendations.

Figure 3a depicts the recommendations of possible classes
for a variable. Given that the variable ?Article is asso-
ciated to a predicate akt:hasAuthor, the system will only
recommend classes that are mentioned with this predicate
in the data graph. Figure 3b depicts the recommendation
of additional predicates for the class akt:Article-Reference
which co-occur with the property akt:hasAuthor. In the case
of class recommendation, elements of the node collection
labels are retrieved from the data graph summary and pre-
sented as possible recommendations. In the case of predicate
recommendation, c-linkset labels LA are retrieved from the
data graph summary and presented to the user. Figure 3c
depicts recommendations of possible relationships between

two variables. The current implementation of the Assisted
SPARQL Editor only supports direct relationships, but in
future work we expect to provide recommendations about
possible shortest paths between two variables. In Figure 3d,
possible named graphs are recommended to the user. In this
case, dataset labels LD are retrieved from the data graph
summary.

B. SPARQL Graph Pattern
In this section, we introduce the main concepts of

SPARQL that are used later in the description of our recom-
mendation engine. SPARQL is the standard query language
for RDF data and is based around graph pattern matching.
Triple Pattern (TP) [8] is the building block in SPARQL:

Definition 4.1 (Triple Pattern): A triple pattern is a tuple
t ∈ (LV E ∪V ar)× (LA ∪V ar)× (LV ∪V ar) where LV E

is the set of the entity node labels and V ar is an infinite set
of variables.
The components of a triple pattern t are denoted subject(t),
predicate(t) and object(t), respectively.

Triple patterns can be combined into a Basic Graph
Pattern (BGP) [8]. More complex graph patterns can be
formed by combining BGPs in various ways [8]:Group
Graph Pattern, Optional Graph Pattern, Alternative Graph
Pattern and Patterns on Named Graphs.

A SPARQL query can be translated into an Abstract
Syntax Tree (AST). The AST is a tree structure composed
of all the logical operators of the query and where leaf
nodes are triple patterns to be evaluated. Such an AST
is the data structure used by the system to translate the
current user needs into possible recommendations. In our
implementation, the AST can contain an incomplete TP and
a special symbol ‘<’ to indicate the POF.

C. From Data Graph to Data Graph Summary
In order to suggest the possible structural elements to

the user with respect to the current state of his query,
we need to translate the AST of the query into another
AST compatible with the data graph summary. This new
AST is then evaluated on the data graph summary and the
possible structural elements are retrieved and presented to
the user. The AST translation is performed in three steps:
1) transformation of the POF symbol ‘<’ into a variable
to project as the query solution; 2) removal of content
elements from the AST; and 3) mapping of triple patterns
into summary patterns. Figure 4 depicts a translation of a
data graph query (Figure 4a) to a data graph summary query
(Figure 4b).

1) Summary Pattern: Similar to Triple Patterns in
SPARQL, Summary Patterns (SPs) are the building blocks
to construct a data graph summary query.

Definition 4.2 (Summary Pattern): A Summary Pattern is
a tuple t ∈ (LC ∪ V ar)× (LA ∪ V ar)× (LC ∪ V ar).

With respect to our RDF data model of the data
graph summary, such a summary pattern is translated
into a SPARQL BGP. For example, given the SP



(a) Class (b) Predicate

(c) Relationships (d) Named Graphs

Figure 3: Overview of the possible recommendations for the http://www.rkbexplorer.com dataset depending on the Point of
Focus. The Point of Focus is displayed by the green angle bracket <.

1 SELECT * WHERE {
2 ?a a : A r t i c l e ;
3 : t i t l e ?t .
4
5
6
7 ?i a : I n s t i t u t e ;
8 :employs ?p .
9

10
11
12 ?p :name "Renaud" ;
13
14
15
16 <
17
18
19 }

(a) SPARQL query
over the data graph.
The Point of Focus is
depicted by the angle
bracket <.

1 SELECT ?POF WHERE {
2 ?a :label : A r t i c l e .
3 ?x :label : t i t l e ;
4 :source ?a ;
5 :target ?t .
6
7 ?i :label : I n s t i t u t e .
8 ?y :label :employs ;
9 :source ?i ;

10 :target ?p .
11
12 ?z1 :label :name ;
13 :source ?p ;
14 :target ?_z1 .
15
16 ?z2 :label ?POF ;
17 :source ?p ;
18 :target ?_z2 .
19 }

(b) SPARQL query over
the data graph summary. The
Point Of Focus defines the
solution set, i.e., the vari-
able ?POF in the SELECT
clause.

Figure 4: Mapping from a data graph query to a data graph
summary query.

< Institute, employs, ?p >, the corresponding SPARQL
BGP is equal to the BGP in Figure 4b from the line 7 to
line 10.

2) Projection of POF: The first step consists of defining
the variable to project as the query solution. In the TP

containing the POF, we transform the POF symbol into
a variable ?POF and complete that TP with a wildcard
variable if needed (we denote by wildcard variable a variable
that is unique in the query). For example in Figures 4a
and 4b at line 16, the POF symbol ‘<’ is translated into the
variable ?POF , and the wildcard variable ? z2 is added to
complete the triple pattern. The initial Query Form [8] of the
AST is replaced by a projection of the POF variable using
the SELECT form.

3) Removal of content elements: The second step consists
in removing all content elements from the AST. A content
element is an element that describes a specific aspect of an
entity, thus it does not inform about its structure. We replace
with a wildcard variable Literals and URIs that appear in a
TP at a subject or object position, except if the TP is a
Class Triple Pattern (CTP). In that case, only the element
at the subject position is replaced by a wildcard variable.
For instance, the literal “Renaud” in Figure 4a is replaced
by the variable ? z1 in Figure 4b.

Definition 4.3 (Class Triple Pattern): A Class Triple Pat-
tern is a triple pattern t such as predicate(t) ∈ LAc .

4) Mapping: The third step consists in mapping all triple
patterns into summary patterns, according to the following
two rules. If the triple pattern < vars, p, o > is a CTP, then
it is replaced with a new triple pattern < vars, label, o >.
Otherwise, the triple pattern < vars, p, varo > is replaced
with the following BGP:

1) A new wildcard variable varx, representing an edge
node x, is created;

http://www.rkbexplorer.com


2) A triple pattern < varx, source, vars > is created to
set the source of the edge;

3) A triple pattern < varx, target, varo > is created to
set the target of the edge;

4) A triple pattern < varx, label, p > is created to set the
label of the edge;

In the case where the triple pattern < vars, p, varo >
belongs to a Graph Graph Pattern [8], i.e., a group graph
pattern associated to a named graph URI g with the GRAPH
operator, then a triple pattern < varx, origin, g > is added
to the previously defined BGP to set the named graph of the
edge. However, if the named graph is the POF variable, the
triple pattern < varx, origin, varPOF > is created instead
in order to restrict each edge to be from the same dataset
and to bind the dataset label to the POF variable.

Applying these mapping rules on the query of Figure 4a,
the first TP < vara, a, Article >, being a CTP, is trans-
lated into the SP < vara, : label, Article >. The second TP
< vara, : title, vart > is translated into the BGP from line
3 to line 5 of the query displayed in Figure 4b.

D. Recommendation Scope
In certain cases during the formulation of a query, the

query may contain multiple BGPs, among which one does
not return any result. The system will therefore no longer
produce recommendations, as the evaluation of the data
graph summary query will also not produce any results.
However, this can be interpreted incorrectly by the user since
he might believe that the dataset does not contain any other
information. In order to minimise this issue, we introduce
the notion of recommendation scope.

The recommendation scope helps to reduce the extent of
the area that is relevant for the recommendation. Instead
of taking into account the full SPARQL query, the rec-
ommendation engine will take only a relevant subset. The
recommendation scope is defined recursively by including
all the triple patterns with a path to the POF variable.
A breadth-first search algorithm on the query, starting on
the POF node, is performed in order to find all the graph
components that are connected to the POF. All the graph
components that are not connected to the POF are removed.
This prevents non-relevant (to the POF) triple patterns from
limiting the recommendations. For example, in Figure 4a,
the recommendation scope does not contain the first BGP
since it is not connected to the POF variable, whether
directly or indirectly. Another possible solution for this issue
is to provide to the user an estimation of the cardinality of
TPs or BGPs that can lead to an empty result set. This is
possible given the cardinality information provided by the
data graph summary. We are currently planning to investigate
this solution for future works.

V. CONCLUSION

In this paper, we have addressed the problem of SPARQL
query formulation over a very large data collection con-
taining 15 billions triples coming from over 300K datasets.

We have proposed a formal model for a data graph sum-
mary that captures the necessary information to assist users
in formulating queries across multiple data sources. We
have presented an algorithm to recommend to the user
the possible structural query elements with respect to the
current state of his query. This paper presents an early
prototype and preliminary version of our system. Future
works include: 1) the investigation of ranking algorithms
for structural elements in the data graph summary; 2) the
recommendation of possible shortest paths between two vari-
ables. A prototypical demo of the assisted SPARQL editor is
available at http://hcls.sindicetech.com/sparql-editor/, along
with a screencast demonstrating the editor in action. This
demo is built on top of the open-source Flint SPARQL editor.

ACKNOWLEDGEMENTS

This material is based upon works supported by the
European FP7 projects LOD2 (257943) and SEMLIB (FP7-
SME-2010-1-SEMLIB 262301) and by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

REFERENCES

[1] S. Campinas, D. Ceccarelli, T. E. Perry, R. Delbru, K. Balog,
and G. Tummarello. The Sindice-2011 Dataset for Entity-
Oriented Search in the Web of Data. July 2011.

[2] R. Delbru, S. Campinas, and G. Tummarello. Searching
Web Data: an Entity Retrieval and High-Performance Indexing
Model. Web Semantics: Science, Services and Agents on the
World Wide Web, 10(0), 2012.

[3] R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In Proceedings of the 23rd International Conference on Very
Large Data Bases, pages 436–445, Aug. 1997.

[4] M. Jarrar and M. D. Dikaiakos. A Query Formulation Lan-
guage for the Data Web. IEEE Transactions on Knowledge
and Data Engineering, (99):1–1, 2011.

[5] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth.
Covering indexes for branching path queries. In Proceedings
of the 2002 ACM SIGMOD international conference on Man-
agement of data - SIGMOD ’02, pages 133–144, New York,
New York, USA, June 2002. ACM Press.

[6] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting
Local Similarity for Indexing Paths in Graph-Structured Data.
In Proceedings of the 18th International Conference on Data
Engineering, pages 129–140, Feb. 2002.

[7] T. Milo and D. Suciu. Index Structures for Path Expressions. In
Proceedings of the 7th International Conference on Database
Theory, pages 277–295, Jan. 1999.

[8] E. Prud’hommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. W3C Recommendation, 2008.

[9] C. Yu and H. V. Jagadish. Schema summarization. In
Proceedings of the 32nd international conference on Very
Large Data Bases, pages 319–330, Sept. 2006.

http://hcls.sindicetech.com/sparql-editor/

	I Introduction
	I-A Contribution

	II Background
	III A Model for Web Data Graph Summary
	III-1 Data Graph
	III-2 Dataset
	III-3 Terminal Nodes
	III-4 Node Collection
	III-5 Node Collection Edge

	III-A Data Graph Summary

	IV Query Recommendation
	IV-A Recommendations Overview
	IV-B SPARQL Graph Pattern
	IV-C From Data Graph to Data Graph Summary
	IV-C1 Summary Pattern
	IV-C2 Projection of POF
	IV-C3 Removal of content elements
	IV-C4 Mapping

	IV-D Recommendation Scope

	V Conclusion
	References

