
Linking Semantic Desktop Data
to the Web of Data

Laura Drăgan1, Renaud Delbru1, Tudor Groza2,
Siegfried Handschuh1, and Stefan Decker1

1 Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway

firstname.lastname@deri.org,
http://www.deri.ie

2 School of ITEE, The University of Queensland, Australia
firstname.lastname@uq.edu.au,
http://www.itee.uq.edu.au

Abstract. The goal of the Semantic Desktop is to enable better or-
ganization of the personal information on our computers, by applying
semantic technologies on the desktop. However, information on our desk-
top is often incomplete, as it is based on our subjective view, or limited
knowledge about an entity. On the other hand, the Web of Data contains
information about virtually everything, generally from multiple sources.
Connecting the desktop to the Web of Data would thus enrich and com-
plement desktop information. Bringing in information from the Web of
Data automatically would take the burden of searching for information
off the user. In addition, connecting the two networks of data opens up
the possibility of advanced personal services on the desktop.

Our solution tackles the problems raised above by using a semantic search
engine for the Web of Data, such as Sindice, to find and retrieve a rele-
vant subset of entities from the web. We present a matching framework,
using a combination of configurable heuristics and rules to compare data
graphs, that achieves a high degree of precision in the linking decision. We
evaluate our methodology with real-world data; create a gold standard
from relevance judgements by experts, and we measure the performance
of our system against it. We show that it is possible to automatically
link desktop data with web data in an effective way.

Keywords: Semantic Desktop, Semantic Web, Linked Data, Personal
Information Management

1 Introduction

The Semantic Desktop aims to enable better organization of the personal in-
formation on our computers, by applying semantic technologies on the desktop.
Just like Linked Data connects distributed data on the web, creating a network
of interlinked information, the Semantic Desktop connects personal data across



application boundaries on the desktop, creating a network of personal informa-
tion. However, information on our desktop is often incomplete, as it is based on
our subjective view, or limited knowledge about an entity.

On the other hand, the Web of Data contains information about virtually
everything, generated by multiple sources, and theoretically unlimited. Connect-
ing the desktop to the Web of Data would thus enrich and complement desktop
information. Bringing in information from the Web of Data automatically would
release the user from the burden of searching for information.

Connecting the two networks of information opens up the possibility of per-
sonal services on the desktop which use external data, but in the personal context
of the user, highly connected to his personal data and focused on his interests.
One such example is a service that finds implicit links between the publications
that the user has on the desktop, and provides recommendations to other pub-
lications on the same topics, by the same authors, or related in another way.
Another desktop service could use information from the Web of Data to notify
the user of new concert dates in his area, based on the latest or most popular
artists played on the desktop. web data can also be used as a point of refer-
ence when working collaboratively, e.g., documents linked by the user to people,
projects, or other resources from his semantic desktop can be shared together
with the annotations, which can be accessed and reused outside of the semantic
desktop where they were generated.

From the perspective of interlinking information, and using the frameworks
provided by the Semantic Desktop and the Web of Data, we have separate islands
of knowledge, both containing similar data, related to the same topics of interest
to the user, but disconnected from each other.

The disconnection appears in two forms:

– The data on the desktop, although similar to that on the Web of Data, is
described using specific desktop ontologies, which are different from the ones
found on the Web of Data. This schema mismatch makes interlinking data
from the two datasets difficult.

– Identifiers (URIs) on the desktop are local to the desktop data space, they
are not globally unique and cannot be dereferenced as normal Linked Data
URIs are. Hence, it is impossible to access and connect to local data from
the Web of Data.

To tackle this disconnection, it is necessary to create links between desktop
identifiers and web identifiers that refer to the same real-world thing. This means
we need to compare the data graph describing the entity on the desktop with the
data graph of an entity on the web. Leaving aside the use of different terminology
within the data, the Web of Data is large, billions of entities across hundreds
of thousands of datasets. From this vast amount of information we must find
and retrieve a relevant subset of entities, that are potential candidates with the
desktop entity. Then we must decide if the candidates are similar enough with
the desktop entity to create a link between the two. Because we wish to make the
interlinking automatic, we must be able to decide with a high degree of precision
which candidates among this subset are in fact referring to the same entity.



Our solution tackles the problems raised above by using a semantic search
engine for the Web of Data, such as Sindice, to find and retrieve a relevant
subset of entities from the web. We then present a matching framework, using
a combination of configurable heuristics and rules to compare data graphs, that
achieves a high degree of precision in the linking decision.

We evaluate our methodology with real-world data. We create a gold standard
from relevance judgements by experts, and we measure the performance of our
system against it.

Our solution proves that interlinking the two environments is feasible, and
even more, it yields good results. Connecting desktop data with the web enables
the system to bring web data to the user, instead of the user having to go find
it by himself.

The paper is organised as follow. In Section 2, we start by presenting the
Nepomuk Semantic Desktop, as it represents the framework on which we base
our solution. We continue with the related work section. In Section 3 we de-
scribe the process for finding web aliases for desktop resources, and continue in
Section 4 with the implementation of the process and a detailed description of
the matching algorithm. We describe the set-up of the evaluation we performed
and the results in Section 5. We discuss some of the results in Section 6, before
concluding.

Throughout the paper we consider that all the data we are working with is
represented as RDF — both on the desktop and on the web. When we men-
tion the desktop, we always mean the Semantic Desktop, more specifically the
Nepomuk instantiation of the Semantic Desktop. Similarly, when we mention
web data, we refer to the Web of Data. In our implementation we only use
Web of Data sources, which are freely available online. However, this is not a
requirement of the system, since new data sources can be easily plugged in.

2 Background

In this section, we first provide an overview of the Nepomuk Semantic Desktop
and the infrastructure it provides. Next, we review existing approaches for entity
linking and entity identity management, and finally compare our entity matching
framework with Silk, a linking discovery framework for the Semantic Web.

2.1 Semantic Desktop and Nepomuk

The Semantic Desktop aims to solve the problem of information interlinking and
to help managing and organising in a better way our personal data by applying
Semantic Web technologies on the desktop. The Semantic Desktop is gaining
momentum by the adoption and integration of the Nepomuk framework [2] into
mainstream desktop environments.

The Nepomuk Semantic Desktop defines and uses a set of ontologies3, com-
plemented by ontologies defined by the community, like Xesam4.It also defines an

3 http://www.semanticdesktop.org/ontologies/
4 http://xesam.org/main/XesamOntology - is used in Nepomuk-KDE



extension to RDF called Nepomuk Representational Language (NRL)5, which
adds Named Graphs and Graph Views to RDF/S and introduces the closed
world assumption to the data.

The ontologies describe various aspects of desktop use cases for personal in-
formation management. The central ontology is the Personal Information Model
(PIMO)6. According to its specification [13], “PIMO is based on the idea that
users have a mental model to categorize their environment”, and “each concept
in the environment . . . is represented as [a] Thing in the model”. PIMO defines
high level types like Person, Project, Event and Task. The desktop ontologies
also include Nepomuk Annotation Ontology (NAO) which allows users to attach
tags and ratings to the resources, Nepomuk Contact Ontology (NCO) which de-
scribes contact information for people and organizations, Task Model Ontology
(TMO) which describes personal tasks and to-dos, etc. All the data is stored in
a central repository that is accessible and shared across applications.

2.2 Related Work

The problem of entity linking is well known across various research communities
with a variety of different names, such as record linkage [8], entity resolution [1],
reference reconciliation [6] or object consolidation [9]. A wide variety of algo-
rithms has been developed for resolving the coreference problem, but record
linkage between distributed databases is still considered a difficult problem.

Recent initiatives within the Semantic Web community address the problem
of linking entities across data sources. Jaffri et al. describe the phenomenon of
proliferation of URIs and propose a Consistent Reference Service to manage
URI equivalences [10]. The OKKAM project [4] proposes an infrastructure for
assigning global identifiers at web scale. These approaches are more focussed
towards the management of entity identity on the web, but do not provide easy
means to create new links between data sources. Similar to our approach, Rai-
mond et al. describe an algorithm and its implementation GNAT, for linking a
personal music collection to corresponding MusicBrainz resources [11]. The ap-
proach measures recursively the similarity of the resource graphs from the two
datasets, with the restriction that the same vocabularies are used in both. By
contrast, using property paths in our mappings, we eliminate the need for re-
cursion while still propagating the measures from connected resources. Silk is a
framework to help linking multiple entities between two datasets [3]. It relies on
user-defined rules and various string matching algorithms to measure the simi-
larity between two entities. In this case it is necessary to know a priory which
specific dataset to link to and to perform manual configuration of the matching
algorithms, something that requires a high degree of expertise. Hogan et al. [9]
and Säıs et al. [12] propose logical-based methodologies for merging identifiers
of equivalent entities across multiples knowledge sources. While being precise,

5 http://www.semanticdesktop.org/ontologies/nrl
6 http://www.semanticdesktop.org/ontologies/pimo/



these techniques do not have a very good recall and are demanding in term of
computation.

The most relevant approach related to ours is the Silk framework. We provide
a generic matching process that the user can configure based on its own expertise
in order to get more precise results. However, our approach differs by the fact
that the matching process is not restricted to link data between two predefined
information sources. On the contrary, our approach gives the possibility to link
desktop data with an arbitrary number of external data sources. This makes the
problem harder since we are generally unaware of the data structure or schema
of these data sources. We therefore need to first find potential entities of interest
among a vast number of data sources, then retrieve a partial description of these
entities and rely on more complex entity matching algorithms. This first step can
be seen as a blocking pass [7] to reduce the information space before executing
complex matching algorithms. The blocking step is implemented on top of the
boolean query model for centralized search systems such as Sindice [14] and on
top of the SPARQL query language for specific data sources providing a SPARQL
endpoint.

3 The Process of Finding Web Aliases

The goal of the algorithm and system is to find web aliases for desktop resources.
A web alias is a web entity identifier, i.e., URIs, that represents the same real-
world thing as the desktop entity to which it was matched. To find web aliases,
we use the information available on the desktop, like the contact information
from the address book for people, or metadata of music files for songs, albums
and artists. We also make use of knowledge about the desktop ontologies and
the way data is organized and used on the desktop. The desktop data is used
throughout the process, which consists of several steps:

1. Candidate Selection

– Query and identify candidate entity URIs from various Web of Data
sources

– Retrieve data for each of the candidate from the appropriate Web of
Data source.

2. Candidate Filtering

– Compute similarity score based on the data of the entities.
– Filter the candidates based on the similarity score.

The first step requires identifying a list of candidate entities and obtaining
the data available about them. There are several options to do this: (i) through
a small set of sources that we know have the data we need, and querying each
of them independently for possible candidates, or (ii) through a search engine
for the Web of Data, like Sindice [14], which indexes millions of documents con-
taining semantic mark-ups. Each option has use cases where it is more suitable
than the other. Querying specific sources is preferred for instance, if the desktop



data we want to find aliases for is from a very specific domain, like cancer re-
search, or when we are interested only in results from an organization’s internal
repository. Using a search engine is best when the information sources to query
are not known a priori. It also has the advantage of covering a large number of
information sources with only one query, and of selecting the most relevant data
sources and candidates with respect to the query via the search engine ranking
system. However, in the case of ambiguous entities, the latter option has the
disadvantage of returning too many unrelated results, thus making the entity
selection more difficult.

Once a list of candidates is available, we compute a similarity score for each of
them with respect to the desktop entity. The algorithm checks first if the types of
the candidate entities correspond to the type of the desktop entity, and discards
the ones that do not. Only then, the data of the entities are examined and the
properties and corresponding values are compared. If required, the algorithm
looks at other related entities and their properties. The values of the properties
are compared using either exact string matching or string similarity techniques.

4 Implementing the Process

We implemented the process described above, in a desktop daemon that finds
web aliases for desktop entities. It sequentially searches for aliases for all re-
sources that have no alias listed, and for the resources that changed since the
last time aliases were determined for them. In the case when a resource is revis-
ited, the previously found aliases are discarded and new ones are determined.

New links are created on the desktop between the local and the web resources,
once the aliases are found. They can be used to enhance the available desktop
data about the entities, or as entry points to access further information about
them online.

The tool has two major components, each handling one step of the matching
process. A query component that initiates the search and identifies the candi-
dates, and a matching component that filters the candidates based on similarity
measures.

4.1 The Query Modules

The query component can use either generic search engines or specific data
sources. Therefore, we chose to make the query component plugin-based, thus
allowing various new sources to be connected if needed. The query modules are
responsible for finding the initial list of candidates, as well as for retrieving the
data for each candidate. The maximum number of candidates to retrieve from a
data source can be set as a parameter in the configuration. We allow three types
of plugins:

SWSE — connect to semantic search engines, through their APIs. We provide
a plugin of this type for Sindice.



Sparql — connect to sources that provide a SPARQL endpoint. We provide
plugins of this type for DBpedia and the Semantic Web Conference Server.

Custom — connect to other sources, possibly ones that do not expose any data
as RDF (e.g., relational databases or third-party APIs like last.fm).

Both DBpedia and SWC are indexed by Sindice, therefore the Sindice plugin
is the only one enabled by default.

In the Sindice module, the initial query, which determines the list of candi-
dates, is constructed using all the value properties of the desktop entity, com-
bined using the boolean conjunction operator “OR”. Multiple word terms are
also tokenised and the tokens are added to the query. We rely on the search
engine to interpret the query and rank higher the results that match most of the
terms. For the music album shown in Figure 3, the query constructed is:

Example 1. “Bee Gees” OR “One Night Only” OR “1998” OR “Bee” OR “Gees”
OR “One” OR “Night” OR “Only”

4.2 The Matching Module

The matching module computes a similarity score for each pair (desktop en-
tity—web candidate entity). The way the score is computed depends on a set of
parameters:

String matching (SM) — If this parameter is set to true, the matching mod-
ule will use string similarity measures where appropriate. Currently the sys-
tem supports Monge Elkan and Chapman distances. If the value is set to
false, the matching module uses exact matching of property values.

Weighted properties (WP) — If true, the matching module will use weights
for the properties compared, otherwise, all properties contribute the same
to the final score.

Multi-valued properties (MVP) — If true, properties that have more than
one matching value will contribute to the score proportionally to the number
of values.

The algorithm also uses a set of mappings from the desktop ontologies to
some of the more popular web vocabularies, like FOAF. There are two kinds:
type mappings (see Figure 1 for an example) and property mappings, each de-
scribed in a separate file. The property mapping supports paths of properties.
For example, you can express a path composed of the property dbpedia:artist

and foaf:name as shown in Figure 2. The mappings are relatively static config-
urations of the system. We have created a set of mappings for the most common
ontologies, which can be used out of the box by the end users. Power users can
edit the mapping files according to their need.

The algorithm for computing the score works as follows. Considering ed and
ew the pair of entities to be compared, it first determines the sets Ted and Tew
of types for each entity, and the set Map[Ted ] of types to which the elements of
Ted are mapped to. If no types are matching, i.e., Tew ∩Map[Ted ] = φ, it gives a



"http://www.semanticdesktop.org/ontologies/2007/11/01/pimo#Person":{

"mapping":[

"http://xmlns.com/foaf/0.1/Person",

"http://xmlns.com/foaf/0.1/Agent",

"http://dbpedia.org/ontology/Person",

"http://www.w3.org/2000/10/swap/pim/contact#Person"

"http://rdf.data-vocabulary.org#Person" ]}

Fig. 1. Type mapping for pimo:Person.

"http://www.semantcdesktop.org/ontologies/2009/02/19/nmm#performer##

http://www.semanticdesktop.org/ontologies/2007/03/22/nco#fullname":{

"mapping":[

"http://dbpedia.org/property/artist",

"http://xmlns.com/foaf/0.1/maker##http://xmlns.com/foaf/0.1/name",

"http://dbpedia.org/ontology/artist##http://xmlns.com/foaf/0.1/name"

],

"approx":"true",

"thresholds":[

"MongeElkan:0.7",

"Chapman:0.8"

],

"weight":"0.7" }

Fig. 2. Property mapping for nmm:performer.

score score(ew) = 0, and stop the matching. Otherwise, it continues the process
by evaluating the properties.

The evaluation of the properties is driven by the relations and properties
of the desktop entity ed. For each property ped , the algorithm retrieves the list
of values V (ped) = {v : {ed ped v}}. Based on the list of property mappings
Map[ped ], it determines the set of values V (pew ∩Map[ped ]) that the properties
from Map[ped ] have in common with ew. If there is no value in common, i.e.,
V (ped) = φ or V (pew∩Map[ped ]) = φ, it skips the pair and there is nothing added
to the score. Otherwise, it continues the process by measuring the similarity
between values.

The evaluation of values is performed using string similarity between each
pair of values (vd, vw) ∈ V (ped) × V (pew ∩Map[ped ]). The algorithm creates a
sparse matrix where the value of a cell contains a string similarity score between
0 and 1. Let sumped

be the sum of the best score for each row of the matrix.

The final score is computed as follows:

score(ew) =

∑
ped

(wped
∗ sumped

)∑
ped

(wped
∗
∣∣V (ped)

∣∣)



where wped
is the weight assigned to a certain property mapping. If the score is

above 0.57, the entity is accepted as a web alias for the desktop entity.

5 Evaluation

To evaluate our system, we wanted to measure the accuracy of the matches, in a
real-world set-up, with real data. For this purpose we created two entity corpora,
one with desktop data and one with web data. To assess the results returned
by our system we created first a baseline from relevance judgements made by
human experts, on these corpora. Then, we ran our entity matching algorithm
and we computed precision, NDCG and MAP to measure its performance.

5.1 Data collection

We created two corpora for the evaluation, one containing desktop entities, and
one containing possible matching entities from the Web of Data.

Desktop data entity corpus. The desktop data used in the evaluation was
collected from a real, in-use Nepomuk-KDE Semantic Desktop. It was generated
by Nepomuk applications, and extracted from the desktop repository.

We restricted the entities selected to three types: (i) people — of type
nco:PersonContact, (ii) publications — of type nfo:PaginatedTextDocument,
and (iii) music albums — nmo:MusicAlbum. From each type we collected fifty
different resources, resulting in a corpus of 150 seed desktop entities, and other
entities related to them. Examples of auxiliary entities are the authors of publi-
cations, which may or may not be already in the corpus as contacts, the tracks of
the albums and the artists. In total the desktop data corpus has 11.917 triples.

We used information from our desktops, therefore the people are colleagues or
other researchers we collaborate with; the publications are related to our research
interests, and generally related to semantics and information extraction. The
music albums data was gathered from several colleagues, for variety of genres.

The contact data is extracted by Nepomuk from the default KDE address
book, and we made no changes to it. The correct way to use the nco:Person-
Contact resources extracted automatically, is to link each of them to a corre-
sponding pimo:Person representing the person that has the contact information.
However, the current tools do not make the distinction, therefore we also used
the “raw” nco:PersonContact resources, for simplicity. The algorithm makes
no distinction between types, so it would yield identical results if we would have
used the “proper” pimo:Person.

The information related to music albums is extracted automatically by Nepo-
muk from the ID3 tags of music files.

For publications we used existing tools to perform shallow metadata extrac-
tion from files to obtain the title and the authors of the publications, when the
metadata of the documents was not set.
7 We found that the threshold 0.5 was providing better results in our experiment.



Web of Data entity corpus. We used the Sindice query module of our system
to generate the second corpus, containing Web of Data entities. For each desktop
entity we retrieved the first twenty results returned by Sindice, thus making a
total of 3.000 URIs. The queries used in Sindice were constructed as presented
in Section 4.1, a combination based on the properties of each desktop entity.
For each URI we obtained all the triples extracted by Sindice — explicit and
implicit. In total this corpus has 1.530.686 triples.

In this dataset we did not explicitly retrieve Sindice data for the auxiliary
entities related to the result URIs. We assumed this data will be available when/if
required — in the relevance judgements by experts, and in the matching process
by the algorithm.

5.2 Relevance Judgements from Experts

We collected the relevance judgements from experts through an online experi-
ment, in which we asked participants to decide if pairs of desktop and web URIs
identify the same real-world object or person. We evaluated in this way all 3.000
pairs from the two corpora. Each pair was judged by three different experts.
Eighteen people participated in the experiment, all researchers in the area of
Semantic Web.

Fig. 3. The web interface of the experiment for collecting relevance judgements.

To simplify the task, we presented the two entities side by side, with all the
information which was available about them in the corpora (see Figure 3). The
desktop entity is shown on the left, and the web entity on the right. On the
web side we included hyperlinks to the related entities, for further exploration



in the case when the information available was not enough to make the decision.
For convenience, on the web side, we have separated and brought to the top the
triples which partially matched any of the values from the desktop side.

There were only two decisions possible: Yes or No, with a Skip option, in case
of uncertainty. Once a pair was judged or skipped, another one was shown to the
participant. The pairs were randomly chosen from the remaining set. To make
the experiment feel like a game, we kept count of the number of pairs judged by
each participant, and displayed it on the page. We found that even such a small
addition generated ad-hoc competition and made the dull task more interesting.

κ σ Avg

All 0.638 0.214 92.252

People 0.661 0.257 88.2

Publications 0.786 0.127 98.067

Albums 0.442 0.233 90.523

Table 1. Inter-annotator agreement measures

The results of the experiment show an average agreement and its standard
deviation, computed with Fleiss’s κ, of 0.638 ± 0.214, over all three types of
entities, suggesting substantial agreement between annotators. Table 1 shows
the Fleiss’s κ and its standard deviation σ per type, as well as the average
pairwise percent agreement. We observed that for music albums, there was only
moderate agreement between annotators, visibly lower than the average, while
for publications it is visibly higher. We believe the difference is caused by the
fact that the data about publications is generated and curated by experts in
the field — even more so, as the publications were largely from the domain of
Semantic Web —, while the music data comes from much more heterogeneous
sources.

5.3 Evaluation Results of the Matching Algorithm

To evaluate the performance of the algorithm, we evaluate each of the matching
modules separately and using a combination of them, against a baseline which
is the matching framework without any matching modules activated. In the fol-
lowing, the String Matching module is denoted by SM, the Weigthed Properties
by WP and the Multi-Valued Properties by MVP.

We used the trec eval tool8 to compute standard information retrieval mea-
sures. The precision at k (P@k) with k=1,2,3,4,5, mean average precision (MAP)
and normalized discounted cumulative gain (NDCG) are reported in Table 2 for
music albums, Table 3 for people and Table 4 for publications. We report also

8 http://trec.nist.gov/trec_eval/



MAP NDCG P@1 P@2 P@3 P@4 P@5

SM WP MVP 0.2464 0.5117 1 0.625 0.4167 0.3125 0.25

SM WP 0.2464 0.5117 1 0.625 0.4167 0.3125 0.25

SM MVP 0.2464 0.5117 1 0.625 0.4167 0.3125 0.25

WP MVP 0 0 0 0 0 0 0

SM 0.2464 0.5117 1 0.625 0.4167 0.3125 0.25

WP 0 0 0 0 0 0 0

MVP 0 0 0 0 0 0 0

Baseline 0 0 0 0 0 0 0

Table 2. Evaluation results for albums, when varying configuration parameters.

the interpolated precision at recall cut-off points when all matching modules are
activated. The goal for the system is high precision, i.e., achieving a maximum
at P@1. Recall is not a target, as it is generally impossible to determine the
entire set of correct results available in the Web of Data.

In Table 2, we can observe that only the SM module is enhancing the results
compared to the baseline. The baseline and the other two modules do not help
the system at matching certain candidates. Also, in term of MAP and NDCG,
the system achieves the lowest performance on the albums corpus. This can
be explained by the fact that the album entities are mostly matching entities
representing e-commerce products, which are not defined as a type of interests,
and therefore rejected by the system. Whether or not such candidates should
have been kept by the system is open to discussion and left for a future work.

In Table 3, we can observe that the baseline, the WP and the MVP modules
are each one able to match good candidates with high precision at P@1, with
WP providing slightly better MAP and NDCG. However, the system does not

MAP NDCG P@1 P@2 P@3 P@4 P@5

SM WP MVP 0.4212 0.6354 0.9302 0.8953 0.7597 0.6337 0.5442

SM WP 0.4174 0.6321 0.9286 0.8929 0.746 0.6131 0.5286

SM MVP 0.4212 0.6354 0.9302 0.8953 0.7597 0.6337 0.5442

WP MVP 0.2916 0.5338 1 0.8243 0.6036 0.473 0.3838

SM 0.4212 0.6354 0.9302 0.8953 0.7597 0.6337 0.5442

WP 0.2916 0.5338 1 0.8243 0.6036 0.473 0.3838

MVP 0.2877 0.53 1 0.8243 0.6036 0.4662 0.3784

Baseline 0.2877 0.53 1 0.8243 0.6036 0.4662 0.3784

Table 3. Evaluation results for people, when varying configuration parameters.



MAP NDCG P@1 P@2 P@3 P@4 P@5

SM WP MVP 0.7773 0.8651 1 0.625 0.4167 0.3125 0.25

SM WP 0.8032 0.8609 0.9062 0.5781 0.3958 0.3047 0.2438

SM MVP 0.7175 0.7986 0.9231 0.5769 0.3846 0.2885 0.2308

WP MVP 1 1 1 0.5 0.3333 0.25 0.2

SM 0.7265 0.7883 0.8235 0.5294 0.3627 0.2868 0.2294

WP 0.6893 0.7347 1 0.55 0.3667 0.275 0.22

MVP 0 0 0 0 0 0 0

Baseline 0.7175 0.7588 1 0.5455 0.3636 0.2727 0.2182

Table 4. Evaluation results for publications, when varying configuration parameters.

get significant advantage by combining them. The SM module alone provides
slightly lower precision at P@1 but significantly better MAP and NDCG. By
combining the three modules, the system does not get significant advantage and
it seems that the SM module prevails.

In Table 4, the baseline provides good results from the start. The system is
not able to return any candidates when the MVP is activated by itself. However,
when WP and MVP are combined, the system achieves much better results (in
term of MAP and NDCG) than the baseline or than the WP module alone.
When the system combines the SM module with the two previous ones, the
system achieves a lower MAP and NDCG but an improved precision with a
larger cut-off rank. While on the two previous types of entities, the SM module
seemed to be the most important matching feature, this corpus shows that the
WP and MVP are important matching features in certain cases.

Fig. 4. Interpolated precision at recall cut-off points.

Overall, the results are satisfying for our use cases where high precision pre-
vails over recall. However, given the results shown in Figure 4, we can see that
the system could be configured to return more than one entity in order to achieve
a better recall while keeping a good precision. It can prove useful to implement



a semi-automatic system which presents the top n candidates to the user for
manual selection.

5.4 Performance

To determine the performance, we measure the time spent on each step of the
algorithm. To be noted that these results come from a prototypical implemen-
tation, still to be subject to technical optimisations. Table 5 shows the average
times overall, and for each resource type separately, when all three parameters
are active — SM, WP, MVP. We find only small variations in the measurements
when the parameter values are changed. We do not consider the time spent
on retrieving data from Sindice, as it depends on external factors, like network
speed and server availability.

Overall People Publications Albums

Pair total 375.04 52.19 977.87 53.18

Types check 0.23 0.26 0.21 0.23

Per property check 6.66 0.92 13.2 22.06

All properties 2026.22 7.17 5478.87 1963.88

Table 5. Time performance (milliseconds).

The checking of types is the only value that in average does not depend
on the type of resource, as it must be performed for all pairs. The time spent
in average per property check is low, but it varies by type, and by the com-
plexity of the properties (e.g. takes longer if several resources in the graph
must be traversed, for long property paths like the name of the artist of an
album). The “All properties” row shows the average time required for checking
all the properties of an entity, and the computation of the final score9. These
values depend on the type of resources as well, and on the complexity of the
resource graph. We found that longer times correspond to very big graphs for
online entities, e.g., the graph for http://webconf.rkbexplorer.com/models/
iswc-aswc-2007-complete.rdf, which must be loaded for checking even if in
most cases are not found to represent valid candidates.

6 Discussion and Future Work

The scope of the system presented here is limited to finding Web of Data aliases
for desktop resources. We leave the use of the aliases found to future work,

9 The “All properties” row has values higher that the “Pair total” row because the
average time is computed only for those pairs who passed the type check, thus less
in number, but with longer computation times.



but the use cases include personalized desktop services like those described in
Section 1 and enhancement of desktop information from online sources. We plan
to develop a semi-automatic service that retrieves information from the web
aliases and updates the local resources, while saving provenance information for
the imported data and allowing synchronization when the web data changes.

There exist already web applications that provide similar services via specific
APIs (e.g., last.fm). However this is not the goal of this work. Instead, we wish to
leverage information across all public information sources accessible on the Web
of Data. In addition, such third-party APIs are seen as an additional information
sources on the web, and are supported by our system.

Within the system, we make use of existing semantic technologies, one of
which are semantic search engines such as Sindice. In the process of determining
the aliases we focus on selecting the most appropriate URI from the list of
candidates returned by the search engine. In this case, the issues of data sources
to trust is left to the search engine, that usually employs advanced techniques [5]
for measuring the popularity of a data source. This is however not a requirement
we impose on the users, who can choose to query other trusted data sources
suitable for their use case.

The system we presented is automatic from the user’s point of view, as there
are no interactions required for it to work. Once set up it will find and save
aliases to desktop resources. Power users can however tweak the settings to fit
their specific needs by enabling/disabling modules, changing threshold values or
managing mappings. Although the mappings were written manually, they are
part of the system and do not need to be modified by end users. We envision for
the future, a way of allowing power users to publish their own mappings and let
other users install new mappings in a way similar to installing add-ons to web
browsers.

7 Conclusion

In this paper, we have presented a framework to automatically link entities
from the semantic desktop to the Web of Data. The framework uses existing
technologies such as semantic search engines or SPARQL endpoints for retrieving
a set of candidates. Each candidate is then evaluated more precisely based on
a collection of matching components using string matching, heuristics and rule-
based mechanisms. We evaluate qualitatively the system using real-world data
retrieved from a Nepomuk Semantic Desktop and the Sindice search engine.
The evaluation is based on relevance judgements from a group of experts. We
show that the system in its current form provides satisfactory results in term of
precision for automatic linking of entities.

Acknowledgments

The work presented in this paper was supported by the Ĺıon-2 project funded by

Science Foundation Ireland under Grant No. SFI/08/CE/I1380, and by the European



projects Digital.me (No. 257787) and LOD2 (No. 257943) under the Seventh Framework

Program (FP7/2007- 2013).

References

1. Benjelloun, O., Garcia-Molina, H., Jonas, J., Su, Q., Widom, J.: Swoosh: A generic
approach to entity resolution. Tech. rep., Stanford University (2006)

2. Bernardi, A., Decker, S., van Elst, L., Grimnes, G., Groza, T., Jazayeri, S.H.M.,
Mesnage, C., Moeller, K., Reif, G., Sintek, M.: The Social Semantic Desktop: A
New Paradigm Towards Deploying the Semantic Web on the Desktop. IGI Global
(2008)

3. Bizer, C., Volz, J., Kobilarov, G., Gaedke, M.: Silk - a link discovery framework
for the web of data. In: Proceedings of the 18th International World Wide Web
Conference (April 2009)

4. Bouquet, P., Stoermer, H., Giacomuzzi, D.: OKKAM: Enabling a web of entities.
In: Proceedings of the WWW2007 Workshop I3: Identity, Identifiers, Identification,
Entity-Centric Approaches to Information and Knowledge Management on the
Web (May 2007)

5. Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., Decker, S.: Hierarchical
Link Analysis for Ranking Web Data. In: Proceedings of the 7th Extended Seman-
tic Web Conference (ESWC 2010). pp. 240–256. Springer (2010)

6. Dong, X., Halevy, A.Y., Madhavan, J.: Reference reconciliation in complex infor-
mation spaces. In: Özcan, F. (ed.) SIGMOD Conference. pp. 85–96. ACM (2005)

7. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

8. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American
Statistical Association 64(328), 1183–1210 (1969)

9. Hogan, A., Harth, A., Decker, S.: Performing object consolidation on the semantic
web data graph. In: Proceedings of the WWW2007 Workshop I3: Identity, Iden-
tifiers, Identification, Entity-Centric Approaches to Information and Knowledge
Management on the Web (May 2007)

10. Jaffri, A., Glaser, H., Millard, I.: URI identity management for semantic web data
integration and linkage. In: 3rd International Workshop On Scalable Semantic
Web Knowledge Base Systems. Springer (November 2007), http://eprints.ecs.
soton.ac.uk/14361/

11. Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets
on the semantic web. In: Proceedings of the Linked Data on the Web workshop,
LDOW2008 (2008)

12. Säıs, F., Pernelle, N., Rousset, M.C.: L2r: a logical method for reference recon-
ciliation. In: AAAI’07: Proceedings of the 22nd national conference on Artificial
intelligence. pp. 329–334. AAAI Press (2007)

13. Sauermann, L., Elst, L.V., Möller, K.: Personal Information Model (PIMO). De-
liverable 1.1 (February 2009), http://www.semanticdesktop.org/ontologies/

2007/11/01/pimo/v1.1/pimo_v1.1.pdf

14. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: Proceedings of the 6th International Semantic Web Conference. pp. 552–565
(2007)


