
SkipBlock: Self-Indexing for Block-Based
Inverted List

Stéphane Campinas12, Renaud Delbru1 and Giovanni Tummarello1

1 Digital Enterprise Research Institute,
National University of Ireland, Galway

Galway, Ireland
2 École Pour l’Informatique et les Techniques Avancées,

Le Kremlin-Bicêtre, France
{stephane.campinas,renaud.delbru,giovanni.tummarello}@deri.org

Abstract. In large web search engines the performance of Information
Retrieval systems is a key issue. Block-based compression methods are
often used to improve the search performance, but current self-indexing
techniques are not adapted to such data structure and provide sub-
optimal performance. In this paper, we present SkipBlock, a self-indexing
model for block-based inverted lists. Based on a cost model, we show that
it is possible to achieve significant improvements on both search perfor-
mance and structure’s space storage.

1 Introduction

The performance of Information Retrieval systems is a key issue in large web
search engines. The use of compression techniques and self-indexing inverted
files [8] is partially accountable for the current performance achievement of web
search engines. On the one hand, compression maximises IO throughput [3] and
therefore increases query throughput. On the other hand, self-indexing inverted
files [8] enables the intersection of inverted lists in sub-linear time.

Nowadays efficient inverted index compression methods tend to have a block-
based approach [6, 10, 1]. An inverted list is divided into multiple non-overlapping
blocks of records. The coding is then done a block at a time independently. De-
spite block-based coding approaches providing incontestable benefits, the self-
indexing method [8] achieves only sub-optimal performance on block-based in-
verted lists. The reason is that the self-indexing technique disregards the block-
based structure of the inverted list that can be used for designing a more efficient
self-indexing structure as we will show in this paper.

We present in this paper an approach for self-indexing of block-based inverted
lists. We demonstrate the benefits of our block-based self-indexing technique by
comparing it against the original self-indexing approach based on a cost model.
In Section 2 we first review the original self-indexing technique based on the
Skip List data structure, before presenting in Section 3 our approach. Section 4
discusses the problem of searching within Skip List intervals. In Section 5 we
define a cost model and compare four implementations of the SkipBlock model

against the original Skip List model. In Section 6 we recall the main finding of
the research and the remaining task.

1.1 Related Work

The Skip List data structure is introduced in [9] as a probabilistic alternative to
balanced trees and it is shown in [5] to be as elegant and easier to use than binary
search trees. Such a structure is later employed for self-indexing of inverted lists
in [8]. Self-indexing of inverted lists enables a sub-linear complexity in average
when intersecting two inverted lists. [2] proposes a way to compress efficiently a
Skip List directly into an inverted list and shows that it is possible to achieve a
substantial performance improvement. In [4], the authors introduce a method to
place skips optimally based on a query distribution. In [7], the authors present
a generalized Skip List data structure for concurrent operations. In this paper,
we introduce a new model for self-indexing of block-based inverted lists based
on an extension of the Skip List data structure. Our work is orthogonal to the
previous works, since each of them could be adapted to our model.

2 Background: Self-Indexing for Inverted Lists

An inverted list is an ordered list of compressed records (e.g., documents iden-
tifiers). When intersecting two or more inverted lists, we often need to access
random records in those lists. A naive approach is to scan linearly the lists to
find them. Such an operation is not optimal and can be reduced to sub-linear
complexity in average by the use of the self-indexing technique [8]. Self-indexing
relies on a Skip List data structure to build a sparse index over the inverted lists
and to provide fast record lookups. In this section, we first present the Skip List
model and its associated search algorithm. We finally discuss the effect of the
probabilistic parameter with respect to the Skip List data structure and search
complexity.

2.1 The Skip List Model

Skip List are used to index records in an inverted list at regular interval. These
indexing points, called synchronization points, are organized into a hierarchy of
linked lists, where a linked list at level i+1 has a probability p to index a record
of the linked list at level i. The probabilistic parameter p is fixed in advance
and indicates the interval between each synchronization point at each level. For
example in Figure 1, a synchronization point is created every 1

p1 = 16 records at

level 1, every 1
p2 = 256 records at level 2, and so on. In addition to the pointer to

the next synchronization point on a same level, a synchronization point at level
i + 1 has a pointer to the same synchronization point at level i. For example in
Figure 1, the first synchronization point at level 3 (i.e., for the record 4096) has
a pointer to the level 2, which itself has a pointer to the level 1. This hierarchical
structure enables to quickly find a given record using a top-down search strategy.

Given the probabilistic parameter p and the size n of an inverted list, we
can deduce two characteristics of the resulting Skip List data structure: (1) the
expected number of levels and (2) the size, i.e., the total number of synchroniza-
tion points. The number of levels in the Skip List is defined by L(n) = bln 1

p
(n)c,

which is the maximum as stated in [9]. The total number of synchronization

points is given by S(n) =
∑L(n)

i=1

⌊
n× pi

⌋
, which sums up the number of syn-

chronization points expected at each level.

2.2 Skip List Search Algorithm

Searching an element in a Skip List is performed with a top-down strategy. The
search starts at the head of the top list and performs a linear walk over the list as
long as the target is greater than a synchronization point. The search goes down
one level if and only if the target is lower than the current synchronisation point,
and resumes the linear walk. The search stops when the current synchronization
point is (a) equal to the target, or (b) on the bottom level and the upper bound
of the target. At this stage, it means we have found the interval of records
containing our target element.

Figure 1 depicts with a solid line the search path in a Skip List with p = 1
16

and L(n) = 3 levels to the record 8195. At the top of the Skip List, we walk
to the record 8192. Then we go down to level 1 and stop because the current
synchronization point, i.e., the record 8208, is greater than the target. At this
point, we know that the target record is in the next interval on the inverted list.

The search complexity is defined by the number of steps necessary to find the
record interval containing the target element. In the worst case, the number of
steps at each level is at most 1

p in at most L(n) levels. Consequently, the search

complexity is L(n)
p .

Fig. 1: Skip List with p = 1
16 . Dashed lines denote pointers between synchroniza-

tion points. The solid line shows the search path to the record 8195.

2.3 Impact of the Probabilistic Parameter

In this section, we discuss the consequences of the probabilistic parameter on
the Skip List data structure. Table 1a reports for low (i.e., 1

1024) and high (i.e.,
1
2) probabilities (1) the complexity L(n)

p to find the interval containing the target

record, and (2) the size S(n) of the Skip List structure. There is a trade-off to
achieve when selecting p: a high probability provides a low search complexity but
at a larger space cost, and a low probability reduces considerably the required

space at the cost of higher search complexity. The SkipBlock model provides
a way to reduce even more the search complexity in exchange of a larger data
structure.

|I| 2 16 64 128 1024

S(n) 99 999 988 6 666 664 1 587 300 787 400 97 751

C 54 112 320 512 3072

(a) Skip List with |I| = 1
p
.

|I| 16 64 128 1024

p:|B| 1
4
:4 1

8
:2 1

4
:16 1

8
:8 1

4
:32 1

8
:16 1

4
:256 1

8
:128

SB(n) 8 333 328 7 142 853 2 083 328 1 785 710 1 041 660 892 853 130 203 111 603

C 48 64 44 56 40 56 36 48

(b) SkipBlock with |I| = |B|
p

.

Table 1: Search and size costs of Skip List and SkipBlock with n = 108. |I|
stands for an interval length. C reports the search complexity to find an interval
(Sections 2.2 and 3.2).

3 SkipBlock: A Block-Based Skip List Model

In this section, we introduce the SkipBlock model and present its associated
search algorithm. Finally we discuss how the SkipBlock model offers finer control
over the Skip List data structure in order to trade search against storage costs.

3.1 The SkipBlock Model

The SkipBlock model operates on blocks of records of a fixed size, in place of the
records themselves. Consequently, the probabilistic parameter p is defined with
respect to a block unit. A synchronization point is created every 1

pi blocks on a

level i, thus every |B|pi records where |B| denotes the block size. A synchronization
point links to the first record of a block interval. Compared to Figure 1, a

SkipBlock structure with p = 1
8 and |B| = 2 also has an interval of |B|p1 =

16 records. However, on level 2, the synchronization points are separated by
|B|
p2 = 128 instead of 256 records. We note that with |B| = 1, the SkipBlock
model is equivalent to the original Skip List model. Therefore this model is a
generalization of the original Skip List model. The number of levels is defined

by LB(n) =
⌊
ln 1

p

(
n
|B|

)⌋
and the size by SB(n) =

∑LB(n)
i=1

⌊
n×pi

|B|

⌋
.

3.2 SkipBlock Search Algorithm

Within the SkipBlock model, the search algorithm returns an interval of blocks
containing the target record. In Section 4, we discuss for searching a record
within that interval. The search strategy is identical to the one presented in
Section 2.2: we walk from the top to the bottom level, and compare at each step
the current synchronization point with the target. The search strategy applies
the same termination criteria as in the Skip List search algorithm. The search

complexity in the worst case becomes LB(n)
p .

3.3 Impact of the Probability and of the Block’s Size

The SkipBlock model provides two parameters to control its Skip List data
structure: the probabilistic parameter p and the block size |B|. Compared to the
original Skip List model, the block size parameter enables a finer control over
the Skip List structure. For example, to build a structure with an interval of
length 64, the original Skip List model proposes only one configuration given by
p = 1

64 . For this same interval length, SkipBlock proposes all the configurations

that verify the equation |B|p = 64. Table 1b reports statistics of some SkipBlock
configurations for the same interval lengths as in Table 1a. Compared to Skip
List on a same interval length, SkipBlock shows a lower search complexity in
exchange of a larger structure.

4 Searching Records in an Interval

The Skip List and SkipBlock techniques enable the retrieval of a record interval
given a target record. The next step consists in finding the target record within
that interval. A first strategy (S1) is to linearly scan all the records within that
interval until the target is found. Its complexity is therefore O(|I|) with |I| the
length of an interval.

SkipBlock takes advantage of the block-based structure of the interval to
perform more efficient search strategies. We define here four additional strategies
for searching a block-based interval. The second strategy (S2) performs (a) a
linear scan over the blocks of the interval to find the block holding the target
and (b) a linear scan of the records of that block to find the target. The search
complexity is 1

p + |B| with 1
p denoting the linear scan over the blocks and |B| the

linear scan over the records of one block. Similarly to S2, the third strategy (S3)
performs the step (a). Then, it uses an inner-block Skip List structure to find the
target, restricted to one level only. The complexity is 1

p + 1
q +b|B| × qc with q the

probability of the inner Skip List. In contrast to S3, the fourth strategy (S4) uses

a non-restricted inner-block Skip List structure. The complexity is 1
p + L(|B|)+1

q

with q the inner Skip List probability. The fifth one (S5) builds a Skip List
structure on the whole interval instead of on a block. Its complexity is then
L
(

|B|
p

)
+1

q , with q the inner Skip List probability. The strategies S3, S4 and S5
are equivalent to S2 when the block size is too small for creating synchronization
points.

5 Cost-Based Comparison

In this section, we define a cost model that is used to compare five SkipBlock
implementations and the original Skip List implementation.

Cost Model For both the Skip List and the SkipBlock, we define a cost model
by (a) the cost to search for the target, and (b) the cost of the data structure’s
size. The search cost consists of the number of synchronization points traversed
to reach the interval containing the target, plus the number of records scanned
in that interval to find the target. The size cost consists in the total number
of synchronization points in the data structure, including the additional ones in
the intervals for S3, S4 and S5.

Implementations We define as the baseline implementation, denoted I1, the
Skip List model using the strategy (S1). We define five implementations of the
SkipBlock model, denoted by I2, I3, I4, I5 and I6, based on the five interval
search strategies, i.e., S1, S2, S3,S4 and S5 respectively. The inner Skip List in
implementations I4, I5 and I6 is configured with probability q = 1

16 . The inner
Skip List in I5 and I6 have at least 2 levels. The size costs are S(n) for I1, SB(n)

for I2, SB(n) + n
|B| for I3, SB(n) + bn× qc for I4, SB(n) + S(|B|)×n

|B| for I5 and

SB(n) + S(p×|B|)×n
p×|B| for I6.

Comparison With respect to the SkipBlock model, we tested all the possible
configurations for a given interval length. We report that all of them were pro-
viding better search cost than the baseline. We report in Table 2 the search and
size cost of the configurations that are providing the best search cost given an
interval length. We observe that I2 already provides better search cost than the
baseline I1 using the same search strategy S1, in exchange of a larger size cost.
The other implementations, i.e., I3, I4, I5 and I6 which use a more efficient inter-
val search strategies further decrease the search cost. In addition, their size cost
decreases significantly with the size of the interval. On a large interval (1152),
I5 and I6 allow yet smaller search cost (69) than I4 with a similar size cost.
Compared to the Skip List with a smaller interval (16), they achieve a smaller
search cost with a similar size. To conclude, I4, I5 and I6 seem to provide a good
compromise between search and size costs with large intervals; I5 and I6 offering
slightly better search cost in exchange of a slightly greater size cost.

|I| 8 16 512 1152

I1 I2 I3 I4 I5 I6 I1 I2 I3 I4 I5 I6 I1 I2 I3 I4 I5 I6 I1 I2 I3 I4 I5 I6

SC 72 56 54 112 62 56 1536 548 120 64 70 3456 1186 154 74 69

ZC×e6 14.3 16.7 50.0 6.7 12.5 25.0 0.2 0.3 1.8 6.5 6.9 0.09 0.17 1.7 6.4 6.6 6.7

Table 2: Search (i.e., SC) and size (i.e., ZC, in million) costs with n = 108.
SkipBlock implementations report the best search cost with the associated size
cost.

6 Conclusion and future work

We presented SkipBlock, a self-indexing model for block-based inverted lists. The
SkipBlock model extends the original Skip List model and provides a backbone

for developing efficient interval search strategies. Compared to the original Skip
List model, SkipBlock achieves with a structure of similar size a lower search cost.
In addition, SkipBlock allows finer control over the Skip List data structure and
so additional possibilities for trading search costs against storage costs. Future
work will focus on real world data benchmarks in order to assess the performance
benefits of the SkipBlock model.

References

1. Anh, V.N., Moffat, A.: Index compression using 64-bit words. Softw. Pract. Exper.
40(2), 131–147 (2010)

2. Boldi, P., Vigna, S.: Compressed perfect embedded skip lists for quick inverted-
index lookups. In: In Proc. SPIRE 2005, Lecture Notes in Computer Science. pp.
25–28. SpringerVerlag (2005)

3. Büttcher, S., Clarke, C.L.A.: Index compression is good, especially for random
access. In: Proceedings of the sixteenth ACM conference on Conference on infor-
mation and knowledge management - CIKM ’07. pp. 761–770. ACM Press, New
York, New York, USA (2007)

4. Chierichetti, F., Lattanzi, S., Mari, F., Panconesi, A.: On placing skips optimally
in expectation. In: WSDM ’08: Proceedings of the international conference on Web
search and web data mining. pp. 15–24. ACM, New York, NY, USA (2008)

5. Dean, B.C., Jones, Z.H.: Exploring the duality between skip lists and binary search
trees. In: ACM-SE 45: Proceedings of the 45th annual southeast regional confer-
ence. pp. 395–399. ACM, New York, NY, USA (2007)

6. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In:
In proceedings of IEEE International Conference on Data Engineering. pp. 370–379
(1998)

7. Messeguer, X.: Skip trees, an alternative data structure to skip lists in a concurrent
approach. ITA pp. 251–269 (1997)

8. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.
Inf. Syst. 14(4), 349–379 (1996)

9. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (1990)

10. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar ram-cpu cache com-
pression. In: ICDE ’06: Proceedings of the 22nd International Conference on Data
Engineering. p. 59. IEEE Computer Society, Washington, DC, USA (2006)

